class Plan(object): def __init__(self): self.results_dir = os.path.join( 'results', '{}_seed_{}_{}_action_scale_{}_no_explore_{}_pool_len_{}_optimisation_iters_{}_top_planning-horizon' .format(args.env, args.seed, args.algo, args.action_scale, args.pool_len, args.optimisation_iters, args.top_planning_horizon)) args.results_dir = self.results_dir args.MultiGPU = True if torch.cuda.device_count( ) > 1 and args.MultiGPU else False self.__basic_setting() self.__init_sample() # Sampleing The Init Data # Initialise model parameters randomly self.transition_model = TransitionModel( args.belief_size, args.state_size, self.env.action_size, args.hidden_size, args.embedding_size, args.dense_activation_function).to(device=args.device) self.observation_model = ObservationModel( args.symbolic_env, self.env.observation_size, args.belief_size, args.state_size, args.embedding_size, args.cnn_activation_function).to(device=args.device) self.reward_model = RewardModel( args.belief_size, args.state_size, args.hidden_size, args.dense_activation_function).to(device=args.device) self.encoder = Encoder( args.symbolic_env, self.env.observation_size, args.embedding_size, args.cnn_activation_function).to(device=args.device) print("We Have {} GPUS".format(torch.cuda.device_count()) ) if args.MultiGPU else print("We use CPU") self.transition_model = nn.DataParallel( self.transition_model.to(device=args.device) ) if args.MultiGPU else self.transition_model self.observation_model = nn.DataParallel( self.observation_model.to(device=args.device) ) if args.MultiGPU else self.observation_model self.reward_model = nn.DataParallel( self.reward_model.to( device=args.device)) if args.MultiGPU else self.reward_model # encoder = nn.DataParallel(encoder.cuda()) # actor_model = nn.DataParallel(actor_model.cuda()) # value_model = nn.DataParallel(value_model.cuda()) # share the global parameters in multiprocessing self.encoder.share_memory() self.observation_model.share_memory() self.reward_model.share_memory() # Set all_model/global_actor_optimizer/global_value_optimizer self.param_list = list(self.transition_model.parameters()) + list( self.observation_model.parameters()) + list( self.reward_model.parameters()) + list( self.encoder.parameters()) self.model_optimizer = optim.Adam( self.param_list, lr=0 if args.learning_rate_schedule != 0 else args.model_learning_rate, eps=args.adam_epsilon) def update_belief_and_act(self, args, env, belief, posterior_state, action, observation, explore=False): # Infer belief over current state q(s_t|o≤t,a<t) from the history # print("action size: ",action.size()) torch.Size([1, 6]) belief, _, _, _, posterior_state, _, _ = self.upper_transition_model( posterior_state, action.unsqueeze(dim=0), belief, self.encoder(observation).unsqueeze(dim=0), None) if hasattr(env, "envs"): belief, posterior_state = list( map(lambda x: x.view(-1, args.test_episodes, x.shape[2]), [x for x in [belief, posterior_state]])) belief, posterior_state = belief.squeeze( dim=0), posterior_state.squeeze( dim=0) # Remove time dimension from belief/state action = self.algorithms.get_action(belief, posterior_state, explore) if explore: action = torch.clamp( Normal(action, args.action_noise).rsample(), -1, 1 ) # Add gaussian exploration noise on top of the sampled action # action = action + args.action_noise * torch.randn_like(action) # Add exploration noise ε ~ p(ε) to the action next_observation, reward, done = env.step( action.cpu() if isinstance(env, EnvBatcher) else action[0].cpu( )) # Perform environment step (action repeats handled internally) return belief, posterior_state, action, next_observation, reward, done def run(self): if args.algo == "dreamer": print("DREAMER") from algorithms.dreamer import Algorithms self.algorithms = Algorithms(self.env.action_size, self.transition_model, self.encoder, self.reward_model, self.observation_model) elif args.algo == "p2p": print("planing to plan") from algorithms.plan_to_plan import Algorithms self.algorithms = Algorithms(self.env.action_size, self.transition_model, self.encoder, self.reward_model, self.observation_model) elif args.algo == "actor_pool_1": print("async sub actor") from algorithms.actor_pool_1 import Algorithms_actor self.algorithms = Algorithms_actor(self.env.action_size, self.transition_model, self.encoder, self.reward_model, self.observation_model) elif args.algo == "aap": from algorithms.asynchronous_actor_planet import Algorithms self.algorithms = Algorithms(self.env.action_size, self.transition_model, self.encoder, self.reward_model, self.observation_model) else: print("planet") from algorithms.planet import Algorithms # args.MultiGPU = False self.algorithms = Algorithms(self.env.action_size, self.transition_model, self.reward_model) if args.test: self.test_only() self.global_prior = Normal( torch.zeros(args.batch_size, args.state_size, device=args.device), torch.ones(args.batch_size, args.state_size, device=args.device)) # Global prior N(0, I) self.free_nats = torch.full( (1, ), args.free_nats, device=args.device) # Allowed deviation in KL divergence # Training (and testing) # args.episodes = 1 for episode in tqdm(range(self.metrics['episodes'][-1] + 1, args.episodes + 1), total=args.episodes, initial=self.metrics['episodes'][-1] + 1): losses = self.train() # self.algorithms.save_loss_data(self.metrics['episodes']) # Update and plot loss metrics self.save_loss_data(tuple( zip(*losses))) # Update and plot loss metrics self.data_collection(episode=episode) # Data collection # args.test_interval = 1 if episode % args.test_interval == 0: self.test(episode=episode) # Test model self.save_model_data(episode=episode) # save model self.env.close() # Close training environment def train_env_model(self, beliefs, prior_states, prior_means, prior_std_devs, posterior_states, posterior_means, posterior_std_devs, observations, actions, rewards, nonterminals): # Calculate observation likelihood, reward likelihood and KL losses (for t = 0 only for latent overshooting); sum over final dims, average over batch and time (original implementation, though paper seems to miss 1/T scaling?) if args.worldmodel_LogProbLoss: observation_dist = Normal( bottle(self.observation_model, (beliefs, posterior_states)), 1) observation_loss = -observation_dist.log_prob( observations[1:]).sum( dim=2 if args.symbolic_env else (2, 3, 4)).mean(dim=(0, 1)) else: observation_loss = F.mse_loss( bottle(self.observation_model, (beliefs, posterior_states)), observations[1:], reduction='none').sum( dim=2 if args.symbolic_env else (2, 3, 4)).mean(dim=(0, 1)) if args.worldmodel_LogProbLoss: reward_dist = Normal( bottle(self.reward_model, (beliefs, posterior_states)), 1) reward_loss = -reward_dist.log_prob(rewards[:-1]).mean(dim=(0, 1)) else: reward_loss = F.mse_loss(bottle(self.reward_model, (beliefs, posterior_states)), rewards[:-1], reduction='none').mean(dim=(0, 1)) # transition loss div = kl_divergence(Normal(posterior_means, posterior_std_devs), Normal(prior_means, prior_std_devs)).sum(dim=2) kl_loss = torch.max(div, self.free_nats).mean( dim=(0, 1) ) # Note that normalisation by overshooting distance and weighting by overshooting distance cancel out if args.global_kl_beta != 0: kl_loss += args.global_kl_beta * kl_divergence( Normal(posterior_means, posterior_std_devs), self.global_prior).sum(dim=2).mean(dim=(0, 1)) # Calculate latent overshooting objective for t > 0 if args.overshooting_kl_beta != 0: overshooting_vars = [ ] # Collect variables for overshooting to process in batch for t in range(1, args.chunk_size - 1): d = min(t + args.overshooting_distance, args.chunk_size - 1) # Overshooting distance t_, d_ = t - 1, d - 1 # Use t_ and d_ to deal with different time indexing for latent states seq_pad = ( 0, 0, 0, 0, 0, t - d + args.overshooting_distance ) # Calculate sequence padding so overshooting terms can be calculated in one batch # Store (0) actions, (1) nonterminals, (2) rewards, (3) beliefs, (4) prior states, (5) posterior means, (6) posterior standard deviations and (7) sequence masks overshooting_vars.append( (F.pad(actions[t:d], seq_pad), F.pad(nonterminals[t:d], seq_pad), F.pad(rewards[t:d], seq_pad[2:]), beliefs[t_], prior_states[t_], F.pad(posterior_means[t_ + 1:d_ + 1].detach(), seq_pad), F.pad(posterior_std_devs[t_ + 1:d_ + 1].detach(), seq_pad, value=1), F.pad( torch.ones(d - t, args.batch_size, args.state_size, device=args.device), seq_pad)) ) # Posterior standard deviations must be padded with > 0 to prevent infinite KL divergences overshooting_vars = tuple(zip(*overshooting_vars)) # Update belief/state using prior from previous belief/state and previous action (over entire sequence at once) beliefs, prior_states, prior_means, prior_std_devs = self.upper_transition_model( torch.cat(overshooting_vars[4], dim=0), torch.cat(overshooting_vars[0], dim=1), torch.cat(overshooting_vars[3], dim=0), None, torch.cat(overshooting_vars[1], dim=1)) seq_mask = torch.cat(overshooting_vars[7], dim=1) # Calculate overshooting KL loss with sequence mask kl_loss += ( 1 / args.overshooting_distance ) * args.overshooting_kl_beta * torch.max((kl_divergence( Normal(torch.cat(overshooting_vars[5], dim=1), torch.cat(overshooting_vars[6], dim=1)), Normal(prior_means, prior_std_devs) ) * seq_mask).sum(dim=2), self.free_nats).mean(dim=(0, 1)) * ( args.chunk_size - 1 ) # Update KL loss (compensating for extra average over each overshooting/open loop sequence) # Calculate overshooting reward prediction loss with sequence mask if args.overshooting_reward_scale != 0: reward_loss += ( 1 / args.overshooting_distance ) * args.overshooting_reward_scale * F.mse_loss( bottle(self.reward_model, (beliefs, prior_states)) * seq_mask[:, :, 0], torch.cat(overshooting_vars[2], dim=1), reduction='none' ).mean(dim=(0, 1)) * ( args.chunk_size - 1 ) # Update reward loss (compensating for extra average over each overshooting/open loop sequence) # Apply linearly ramping learning rate schedule if args.learning_rate_schedule != 0: for group in self.model_optimizer.param_groups: group['lr'] = min( group['lr'] + args.model_learning_rate / args.model_learning_rate_schedule, args.model_learning_rate) model_loss = observation_loss + reward_loss + kl_loss # Update model parameters self.model_optimizer.zero_grad() model_loss.backward() nn.utils.clip_grad_norm_(self.param_list, args.grad_clip_norm, norm_type=2) self.model_optimizer.step() return observation_loss, reward_loss, kl_loss def train(self): # Model fitting losses = [] print("training loop") # args.collect_interval = 1 for s in tqdm(range(args.collect_interval)): # Draw sequence chunks {(o_t, a_t, r_t+1, terminal_t+1)} ~ D uniformly at random from the dataset (including terminal flags) observations, actions, rewards, nonterminals = self.D.sample( args.batch_size, args.chunk_size) # Transitions start at time t = 0 # Create initial belief and state for time t = 0 init_belief, init_state = torch.zeros( args.batch_size, args.belief_size, device=args.device), torch.zeros(args.batch_size, args.state_size, device=args.device) # Update belief/state using posterior from previous belief/state, previous action and current observation (over entire sequence at once) obs = bottle(self.encoder, (observations[1:], )) beliefs, prior_states, prior_means, prior_std_devs, posterior_states, posterior_means, posterior_std_devs = self.upper_transition_model( prev_state=init_state, actions=actions[:-1], prev_belief=init_belief, obs=obs, nonterminals=nonterminals[:-1]) # Calculate observation likelihood, reward likelihood and KL losses (for t = 0 only for latent overshooting); sum over final dims, average over batch and time (original implementation, though paper seems to miss 1/T scaling?) observation_loss, reward_loss, kl_loss = self.train_env_model( beliefs, prior_states, prior_means, prior_std_devs, posterior_states, posterior_means, posterior_std_devs, observations, actions, rewards, nonterminals) # Dreamer implementation: actor loss calculation and optimization with torch.no_grad(): actor_states = posterior_states.detach().to( device=args.device).share_memory_() actor_beliefs = beliefs.detach().to( device=args.device).share_memory_() # if not os.path.exists(os.path.join(os.getcwd(), 'tensor_data/' + args.results_dir)): os.mkdir(os.path.join(os.getcwd(), 'tensor_data/' + args.results_dir)) torch.save( actor_states, os.path.join(os.getcwd(), args.results_dir + '/actor_states.pt')) torch.save( actor_beliefs, os.path.join(os.getcwd(), args.results_dir + '/actor_beliefs.pt')) # [self.actor_pipes[i][0].send(1) for i, w in enumerate(self.workers_actor)] # Parent_pipe send data using i'th pipes # [self.actor_pipes[i][0].recv() for i, _ in enumerate(self.actor_pool)] # waitting the children finish self.algorithms.train_algorithm(actor_states, actor_beliefs) losses.append( [observation_loss.item(), reward_loss.item(), kl_loss.item()]) # if self.algorithms.train_algorithm(actor_states, actor_beliefs) is not None: # merge_actor_loss, merge_value_loss = self.algorithms.train_algorithm(actor_states, actor_beliefs) # losses.append([observation_loss.item(), reward_loss.item(), kl_loss.item(), merge_actor_loss.item(), merge_value_loss.item()]) # else: # losses.append([observation_loss.item(), reward_loss.item(), kl_loss.item()]) return losses def data_collection(self, episode): print("Data collection") with torch.no_grad(): observation, total_reward = self.env.reset(), 0 belief, posterior_state, action = torch.zeros( 1, args.belief_size, device=args.device), torch.zeros( 1, args.state_size, device=args.device), torch.zeros(1, self.env.action_size, device=args.device) pbar = tqdm(range(args.max_episode_length // args.action_repeat)) for t in pbar: # print("step",t) belief, posterior_state, action, next_observation, reward, done = self.update_belief_and_act( args, self.env, belief, posterior_state, action, observation.to(device=args.device)) self.D.append(observation, action.cpu(), reward, done) total_reward += reward observation = next_observation if args.render: self.env.render() if done: pbar.close() break # Update and plot train reward metrics self.metrics['steps'].append(t + self.metrics['steps'][-1]) self.metrics['episodes'].append(episode) self.metrics['train_rewards'].append(total_reward) Save_Txt(self.metrics['episodes'][-1], self.metrics['train_rewards'][-1], 'train_rewards', args.results_dir) # lineplot(metrics['episodes'][-len(metrics['train_rewards']):], metrics['train_rewards'], 'train_rewards', results_dir) def test(self, episode): print("Test model") # Set models to eval mode self.transition_model.eval() self.observation_model.eval() self.reward_model.eval() self.encoder.eval() self.algorithms.train_to_eval() # self.actor_model_g.eval() # self.value_model_g.eval() # Initialise parallelised test environments test_envs = EnvBatcher( Env, (args.env, args.symbolic_env, args.seed, args.max_episode_length, args.action_repeat, args.bit_depth), {}, args.test_episodes) with torch.no_grad(): observation, total_rewards, video_frames = test_envs.reset( ), np.zeros((args.test_episodes, )), [] belief, posterior_state, action = torch.zeros( args.test_episodes, args.belief_size, device=args.device), torch.zeros( args.test_episodes, args.state_size, device=args.device), torch.zeros(args.test_episodes, self.env.action_size, device=args.device) pbar = tqdm(range(args.max_episode_length // args.action_repeat)) for t in pbar: belief, posterior_state, action, next_observation, reward, done = self.update_belief_and_act( args, test_envs, belief, posterior_state, action, observation.to(device=args.device)) total_rewards += reward.numpy() if not args.symbolic_env: # Collect real vs. predicted frames for video video_frames.append( make_grid(torch.cat([ observation, self.observation_model(belief, posterior_state).cpu() ], dim=3) + 0.5, nrow=5).numpy()) # Decentre observation = next_observation if done.sum().item() == args.test_episodes: pbar.close() break # Update and plot reward metrics (and write video if applicable) and save metrics self.metrics['test_episodes'].append(episode) self.metrics['test_rewards'].append(total_rewards.tolist()) Save_Txt(self.metrics['test_episodes'][-1], self.metrics['test_rewards'][-1], 'test_rewards', args.results_dir) # Save_Txt(np.asarray(metrics['steps'])[np.asarray(metrics['test_episodes']) - 1], metrics['test_rewards'],'test_rewards_steps', results_dir, xaxis='step') # lineplot(metrics['test_episodes'], metrics['test_rewards'], 'test_rewards', results_dir) # lineplot(np.asarray(metrics['steps'])[np.asarray(metrics['test_episodes']) - 1], metrics['test_rewards'], 'test_rewards_steps', results_dir, xaxis='step') if not args.symbolic_env: episode_str = str(episode).zfill(len(str(args.episodes))) write_video(video_frames, 'test_episode_%s' % episode_str, args.results_dir) # Lossy compression save_image( torch.as_tensor(video_frames[-1]), os.path.join(args.results_dir, 'test_episode_%s.png' % episode_str)) torch.save(self.metrics, os.path.join(args.results_dir, 'metrics.pth')) # Set models to train mode self.transition_model.train() self.observation_model.train() self.reward_model.train() self.encoder.train() # self.actor_model_g.train() # self.value_model_g.train() self.algorithms.eval_to_train() # Close test environments test_envs.close() def test_only(self): # Set models to eval mode self.transition_model.eval() self.reward_model.eval() self.encoder.eval() with torch.no_grad(): total_reward = 0 for _ in tqdm(range(args.test_episodes)): observation = self.env.reset() belief, posterior_state, action = torch.zeros( 1, args.belief_size, device=args.device), torch.zeros( 1, args.state_size, device=args.device), torch.zeros(1, self.env.action_size, device=args.device) pbar = tqdm( range(args.max_episode_length // args.action_repeat)) for t in pbar: belief, posterior_state, action, observation, reward, done = self.update_belief_and_act( args, self.env, belief, posterior_state, action, observation.to(evice=args.device)) total_reward += reward if args.render: self.env.render() if done: pbar.close() break print('Average Reward:', total_reward / args.test_episodes) self.env.close() quit() def __basic_setting(self): args.overshooting_distance = min( args.chunk_size, args.overshooting_distance ) # Overshooting distance cannot be greater than chunk size print(' ' * 26 + 'Options') for k, v in vars(args).items(): print(' ' * 26 + k + ': ' + str(v)) print("torch.cuda.device_count() {}".format(torch.cuda.device_count())) os.makedirs(args.results_dir, exist_ok=True) np.random.seed(args.seed) torch.manual_seed(args.seed) # Set Cuda if torch.cuda.is_available() and not args.disable_cuda: print("using CUDA") args.device = torch.device('cuda') torch.cuda.manual_seed(args.seed) else: print("using CPU") args.device = torch.device('cpu') self.summary_name = args.results_dir + "/{}_{}_log" self.writer = SummaryWriter(self.summary_name.format( args.env, args.id)) self.env = Env(args.env, args.symbolic_env, args.seed, args.max_episode_length, args.action_repeat, args.bit_depth) self.metrics = { 'steps': [], 'episodes': [], 'train_rewards': [], 'test_episodes': [], 'test_rewards': [], 'observation_loss': [], 'reward_loss': [], 'kl_loss': [], 'merge_actor_loss': [], 'merge_value_loss': [] } def __init_sample(self): if args.experience_replay is not '' and os.path.exists( args.experience_replay): self.D = torch.load(args.experience_replay) self.metrics['steps'], self.metrics['episodes'] = [ self.D.steps ] * self.D.episodes, list(range(1, self.D.episodes + 1)) elif not args.test: self.D = ExperienceReplay(args.experience_size, args.symbolic_env, self.env.observation_size, self.env.action_size, args.bit_depth, args.device) # Initialise dataset D with S random seed episodes print( "Start Multi Sample Processing -------------------------------" ) start_time = time.time() data_lists = [ Manager().list() for i in range(1, args.seed_episodes + 1) ] # Set Global Lists pipes = [Pipe() for i in range(1, args.seed_episodes + 1) ] # Set Multi Pipe workers_init_sample = [ Worker_init_Sample(child_conn=child, id=i + 1) for i, [parent, child] in enumerate(pipes) ] for i, w in enumerate(workers_init_sample): w.start() # Start Single Process pipes[i][0].send( data_lists[i]) # Parent_pipe send data using i'th pipes [w.join() for w in workers_init_sample] # wait sub_process done for i, [parent, child] in enumerate(pipes): # datas = parent.recv() for data in list(parent.recv()): if isinstance(data, tuple): assert len(data) == 4 self.D.append(data[0], data[1], data[2], data[3]) elif isinstance(data, int): t = data self.metrics['steps'].append(t * args.action_repeat + ( 0 if len(self.metrics['steps']) == 0 else self.metrics['steps'][-1])) self.metrics['episodes'].append(i + 1) else: print( "The Recvive Data Have Some Problems, Need To Fix") end_time = time.time() print("the process times {} s".format(end_time - start_time)) print( "End Multi Sample Processing -------------------------------") def upper_transition_model(self, prev_state, actions, prev_belief, obs, nonterminals): actions = torch.transpose(actions, 0, 1) if args.MultiGPU else actions nonterminals = torch.transpose(nonterminals, 0, 1).to( device=args.device ) if args.MultiGPU and nonterminals is not None else nonterminals obs = torch.transpose(obs, 0, 1).to( device=args.device) if args.MultiGPU and obs is not None else obs temp_val = self.transition_model(prev_state.to(device=args.device), actions.to(device=args.device), prev_belief.to(device=args.device), obs, nonterminals) return list( map( lambda x: torch.cat(x.chunk(torch.cuda.device_count(), 0), 1) if x.shape[1] != prev_state.shape[0] else x, [x for x in temp_val])) def save_loss_data(self, losses): self.metrics['observation_loss'].append(losses[0]) self.metrics['reward_loss'].append(losses[1]) self.metrics['kl_loss'].append(losses[2]) self.metrics['merge_actor_loss'].append( losses[3]) if losses.__len__() > 3 else None self.metrics['merge_value_loss'].append( losses[4]) if losses.__len__() > 3 else None Save_Txt(self.metrics['episodes'][-1], self.metrics['observation_loss'][-1], 'observation_loss', args.results_dir) Save_Txt(self.metrics['episodes'][-1], self.metrics['reward_loss'][-1], 'reward_loss', args.results_dir) Save_Txt(self.metrics['episodes'][-1], self.metrics['kl_loss'][-1], 'kl_loss', args.results_dir) Save_Txt(self.metrics['episodes'][-1], self.metrics['merge_actor_loss'][-1], 'merge_actor_loss', args.results_dir) if losses.__len__() > 3 else None Save_Txt(self.metrics['episodes'][-1], self.metrics['merge_value_loss'][-1], 'merge_value_loss', args.results_dir) if losses.__len__() > 3 else None # lineplot(metrics['episodes'][-len(metrics['observation_loss']):], metrics['observation_loss'], 'observation_loss', results_dir) # lineplot(metrics['episodes'][-len(metrics['reward_loss']):], metrics['reward_loss'], 'reward_loss', results_dir) # lineplot(metrics['episodes'][-len(metrics['kl_loss']):], metrics['kl_loss'], 'kl_loss', results_dir) # lineplot(metrics['episodes'][-len(metrics['actor_loss']):], metrics['actor_loss'], 'actor_loss', results_dir) # lineplot(metrics['episodes'][-len(metrics['value_loss']):], metrics['value_loss'], 'value_loss', results_dir) def save_model_data(self, episode): # writer.add_scalar("train_reward", metrics['train_rewards'][-1], metrics['steps'][-1]) # writer.add_scalar("train/episode_reward", metrics['train_rewards'][-1], metrics['steps'][-1]*args.action_repeat) # writer.add_scalar("observation_loss", metrics['observation_loss'][0][-1], metrics['steps'][-1]) # writer.add_scalar("reward_loss", metrics['reward_loss'][0][-1], metrics['steps'][-1]) # writer.add_scalar("kl_loss", metrics['kl_loss'][0][-1], metrics['steps'][-1]) # writer.add_scalar("actor_loss", metrics['actor_loss'][0][-1], metrics['steps'][-1]) # writer.add_scalar("value_loss", metrics['value_loss'][0][-1], metrics['steps'][-1]) # print("episodes: {}, total_steps: {}, train_reward: {} ".format(metrics['episodes'][-1], metrics['steps'][-1], metrics['train_rewards'][-1])) # Checkpoint models if episode % args.checkpoint_interval == 0: # torch.save({'transition_model': transition_model.state_dict(), # 'observation_model': observation_model.state_dict(), # 'reward_model': reward_model.state_dict(), # 'encoder': encoder.state_dict(), # 'actor_model': actor_model_g.state_dict(), # 'value_model': value_model_g.state_dict(), # 'model_optimizer': model_optimizer.state_dict(), # 'actor_optimizer': actor_optimizer_g.state_dict(), # 'value_optimizer': value_optimizer_g.state_dict() # }, os.path.join(results_dir, 'models_%d.pth' % episode)) if args.checkpoint_experience: torch.save( self.D, os.path.join(args.results_dir, 'experience.pth') ) # Warning: will fail with MemoryError with large memory sizes
class Dreamer(Agent): # The agent has its own replay buffer, update, act def __init__(self, args): """ All paras are passed by args :param args: a dict that includes parameters """ super().__init__() self.args = args # Initialise model parameters randomly self.transition_model = TransitionModel( args.belief_size, args.state_size, args.action_size, args.hidden_size, args.embedding_size, args.dense_act).to(device=args.device) self.observation_model = ObservationModel( args.symbolic, args.observation_size, args.belief_size, args.state_size, args.embedding_size, activation_function=(args.dense_act if args.symbolic else args.cnn_act)).to(device=args.device) self.reward_model = RewardModel(args.belief_size, args.state_size, args.hidden_size, args.dense_act).to(device=args.device) self.encoder = Encoder(args.symbolic, args.observation_size, args.embedding_size, args.cnn_act).to(device=args.device) self.actor_model = ActorModel( args.action_size, args.belief_size, args.state_size, args.hidden_size, activation_function=args.dense_act, fix_speed=args.fix_speed, throttle_base=args.throttle_base).to(device=args.device) self.value_model = ValueModel(args.belief_size, args.state_size, args.hidden_size, args.dense_act).to(device=args.device) self.value_model2 = ValueModel(args.belief_size, args.state_size, args.hidden_size, args.dense_act).to(device=args.device) self.pcont_model = PCONTModel(args.belief_size, args.state_size, args.hidden_size, args.dense_act).to(device=args.device) self.target_value_model = deepcopy(self.value_model) self.target_value_model2 = deepcopy(self.value_model2) for p in self.target_value_model.parameters(): p.requires_grad = False for p in self.target_value_model2.parameters(): p.requires_grad = False # setup the paras to update self.world_param = list(self.transition_model.parameters())\ + list(self.observation_model.parameters())\ + list(self.reward_model.parameters())\ + list(self.encoder.parameters()) if args.pcont: self.world_param += list(self.pcont_model.parameters()) # setup optimizer self.world_optimizer = optim.Adam(self.world_param, lr=args.world_lr) self.actor_optimizer = optim.Adam(self.actor_model.parameters(), lr=args.actor_lr) self.value_optimizer = optim.Adam(list(self.value_model.parameters()) + list(self.value_model2.parameters()), lr=args.value_lr) # setup the free_nat to self.free_nats = torch.full( (1, ), args.free_nats, dtype=torch.float32, device=args.device) # Allowed deviation in KL divergence # TODO: change it to the new replay buffer, in buffer.py self.D = ExperienceReplay(args.experience_size, args.symbolic, args.observation_size, args.action_size, args.bit_depth, args.device) if self.args.auto_temp: # setup for learning of alpha term (temp of the entropy term) self.log_temp = torch.zeros(1, requires_grad=True, device=args.device) self.target_entropy = -np.prod( args.action_size if not args.fix_speed else self.args. action_size - 1).item() # heuristic value from SAC paper self.temp_optimizer = optim.Adam( [self.log_temp], lr=args.value_lr) # use the same value_lr # TODO: print out the param used in Dreamer # var_counts = tuple(count_vars(module) for module in [self., self.ac.q1, self.ac.q2]) # print('\nNumber of parameters: \t pi: %d, \t q1: %d, \t q2: %d\n' % var_counts) # def process_im(self, image, image_size=None, rgb=None): # # Resize, put channel first, convert it to a tensor, centre it to [-0.5, 0.5] and add batch dimenstion. # # def preprocess_observation_(observation, bit_depth): # # Preprocesses an observation inplace (from float32 Tensor [0, 255] to [-0.5, 0.5]) # observation.div_(2 ** (8 - bit_depth)).floor_().div_(2 ** bit_depth).sub_( # 0.5) # Quantise to given bit depth and centre # observation.add_(torch.rand_like(observation).div_( # 2 ** bit_depth)) # Dequantise (to approx. match likelihood of PDF of continuous images vs. PMF of discrete images) # # image = image[40:, :, :] # clip the above 40 rows # image = torch.tensor(cv2.resize(image, (40, 40), interpolation=cv2.INTER_LINEAR).transpose(2, 0, 1), # dtype=torch.float32) # Resize and put channel first # # preprocess_observation_(image, self.args.bit_depth) # return image.unsqueeze(dim=0) def process_im(self, images, image_size=None, rgb=None): images = cv2.resize(images, (40, 40)) images = np.dot(images, [0.299, 0.587, 0.114]) obs = torch.tensor(images, dtype=torch.float32).div_(255.).sub_(0.5).unsqueeze( dim=0) # shape [1, 40, 40], range:[-0.5,0.5] return obs.unsqueeze(dim=0) # add batch dimension def append_buffer(self, new_traj): # append new collected trajectory, not implement the data augmentation # shape of new_traj: [(o, a, r, d) * steps] for state in new_traj: observation, action, reward, done = state self.D.append(observation, action.cpu(), reward, done) def _compute_loss_world(self, state, data): # unpackage data beliefs, prior_states, prior_means, prior_std_devs, posterior_states, posterior_means, posterior_std_devs = state observations, rewards, nonterminals = data # observation_loss = F.mse_loss( # bottle(self.observation_model, (beliefs, posterior_states)), # observations[1:], # reduction='none').sum(dim=2 if self.args.symbolic else (2, 3, 4)).mean(dim=(0, 1)) # # reward_loss = F.mse_loss( # bottle(self.reward_model, (beliefs, posterior_states)), # rewards[1:], # reduction='none').mean(dim=(0,1)) observation_loss = F.mse_loss( bottle(self.observation_model, (beliefs, posterior_states)), observations, reduction='none').sum( dim=2 if self.args.symbolic else (2, 3, 4)).mean(dim=(0, 1)) reward_loss = F.mse_loss(bottle(self.reward_model, (beliefs, posterior_states)), rewards, reduction='none').mean(dim=(0, 1)) # TODO: 5 # transition loss kl_loss = torch.max( kl_divergence( Independent(Normal(posterior_means, posterior_std_devs), 1), Independent(Normal(prior_means, prior_std_devs), 1)), self.free_nats).mean(dim=(0, 1)) # print("check the reward", bottle(pcont_model, (beliefs, posterior_states)).shape, nonterminals[:-1].shape) if self.args.pcont: pcont_loss = F.binary_cross_entropy( bottle(self.pcont_model, (beliefs, posterior_states)), nonterminals) # pcont_pred = torch.distributions.Bernoulli(logits=bottle(self.pcont_model, (beliefs, posterior_states))) # pcont_loss = -pcont_pred.log_prob(nonterminals[1:]).mean(dim=(0, 1)) return observation_loss, self.args.reward_scale * reward_loss, kl_loss, ( self.args.pcont_scale * pcont_loss if self.args.pcont else 0) def _compute_loss_actor(self, imag_beliefs, imag_states, imag_ac_logps=None): # reward and value prediction of imagined trajectories imag_rewards = bottle(self.reward_model, (imag_beliefs, imag_states)) imag_values = bottle(self.value_model, (imag_beliefs, imag_states)) imag_values2 = bottle(self.value_model2, (imag_beliefs, imag_states)) imag_values = torch.min(imag_values, imag_values2) with torch.no_grad(): if self.args.pcont: pcont = bottle(self.pcont_model, (imag_beliefs, imag_states)) else: pcont = self.args.discount * torch.ones_like(imag_rewards) pcont = pcont.detach() if imag_ac_logps is not None: imag_values[ 1:] -= self.args.temp * imag_ac_logps # add entropy here returns = cal_returns(imag_rewards[:-1], imag_values[:-1], imag_values[-1], pcont[:-1], lambda_=self.args.disclam) discount = torch.cumprod( torch.cat([torch.ones_like(pcont[:1]), pcont[:-2]], 0), 0) discount = discount.detach() assert list(discount.size()) == list(returns.size()) actor_loss = -torch.mean(discount * returns) return actor_loss def _compute_loss_critic(self, imag_beliefs, imag_states, imag_ac_logps=None): with torch.no_grad(): # calculate the target with the target nn target_imag_values = bottle(self.target_value_model, (imag_beliefs, imag_states)) target_imag_values2 = bottle(self.target_value_model2, (imag_beliefs, imag_states)) target_imag_values = torch.min(target_imag_values, target_imag_values2) imag_rewards = bottle(self.reward_model, (imag_beliefs, imag_states)) if self.args.pcont: pcont = bottle(self.pcont_model, (imag_beliefs, imag_states)) else: pcont = self.args.discount * torch.ones_like(imag_rewards) # print("check pcont", pcont) if imag_ac_logps is not None: target_imag_values[1:] -= self.args.temp * imag_ac_logps returns = cal_returns(imag_rewards[:-1], target_imag_values[:-1], target_imag_values[-1], pcont[:-1], lambda_=self.args.disclam) target_return = returns.detach() value_pred = bottle(self.value_model, (imag_beliefs, imag_states))[:-1] value_pred2 = bottle(self.value_model2, (imag_beliefs, imag_states))[:-1] value_loss = F.mse_loss(value_pred, target_return, reduction="none").mean(dim=(0, 1)) value_loss2 = F.mse_loss(value_pred2, target_return, reduction="none").mean(dim=(0, 1)) value_loss += value_loss2 return value_loss def _latent_imagination(self, beliefs, posterior_states, with_logprob=False): # Rollout to generate imagined trajectories chunk_size, batch_size, _ = list( posterior_states.size()) # flatten the tensor flatten_size = chunk_size * batch_size posterior_states = posterior_states.detach().reshape(flatten_size, -1) beliefs = beliefs.detach().reshape(flatten_size, -1) imag_beliefs, imag_states, imag_ac_logps = [beliefs ], [posterior_states], [] for i in range(self.args.planning_horizon): imag_action, imag_ac_logp = self.actor_model( imag_beliefs[-1].detach(), imag_states[-1].detach(), deterministic=False, with_logprob=with_logprob, ) imag_action = imag_action.unsqueeze(dim=0) # add time dim # print(imag_states[-1].shape, imag_action.shape, imag_beliefs[-1].shape) imag_belief, imag_state, _, _ = self.transition_model( imag_states[-1], imag_action, imag_beliefs[-1]) imag_beliefs.append(imag_belief.squeeze(dim=0)) imag_states.append(imag_state.squeeze(dim=0)) if with_logprob: imag_ac_logps.append(imag_ac_logp.squeeze(dim=0)) imag_beliefs = torch.stack(imag_beliefs, dim=0).to( self.args.device ) # shape [horizon+1, (chuck-1)*batch, belief_size] imag_states = torch.stack(imag_states, dim=0).to(self.args.device) if with_logprob: imag_ac_logps = torch.stack(imag_ac_logps, dim=0).to( self.args.device) # shape [horizon, (chuck-1)*batch] return imag_beliefs, imag_states, imag_ac_logps if with_logprob else None def update_parameters(self, gradient_steps): loss_info = [] # used to record loss for s in tqdm(range(gradient_steps)): # get state and belief of samples observations, actions, rewards, nonterminals = self.D.sample( self.args.batch_size, self.args.chunk_size) # print("check sampled rewrads", rewards) init_belief = torch.zeros(self.args.batch_size, self.args.belief_size, device=self.args.device) init_state = torch.zeros(self.args.batch_size, self.args.state_size, device=self.args.device) # Update belief/state using posterior from previous belief/state, previous action and current observation (over entire sequence at once) # beliefs, prior_states, prior_means, prior_std_devs, posterior_states, posterior_means, posterior_std_devs = self.transition_model( # init_state, # actions[:-1], # init_belief, # bottle(self.encoder, (observations[1:], )), # nonterminals[:-1]) beliefs, prior_states, prior_means, prior_std_devs, posterior_states, posterior_means, posterior_std_devs = self.transition_model( init_state, actions, init_belief, bottle(self.encoder, (observations, )), nonterminals) # TODO: 4 # update paras of world model world_model_loss = self._compute_loss_world( state=(beliefs, prior_states, prior_means, prior_std_devs, posterior_states, posterior_means, posterior_std_devs), data=(observations, rewards, nonterminals)) observation_loss, reward_loss, kl_loss, pcont_loss = world_model_loss self.world_optimizer.zero_grad() (observation_loss + reward_loss + kl_loss + pcont_loss).backward() nn.utils.clip_grad_norm_(self.world_param, self.args.grad_clip_norm, norm_type=2) self.world_optimizer.step() # freeze params to save memory for p in self.world_param: p.requires_grad = False for p in self.value_model.parameters(): p.requires_grad = False for p in self.value_model2.parameters(): p.requires_gard = False # latent imagination imag_beliefs, imag_states, imag_ac_logps = self._latent_imagination( beliefs, posterior_states, with_logprob=self.args.with_logprob) # update temp if self.args.auto_temp: temp_loss = -( self.log_temp * (imag_ac_logps[0] + self.target_entropy).detach()).mean() self.temp_optimizer.zero_grad() temp_loss.backward() self.temp_optimizer.step() self.args.temp = self.log_temp.exp() # update actor actor_loss = self._compute_loss_actor(imag_beliefs, imag_states, imag_ac_logps=imag_ac_logps) self.actor_optimizer.zero_grad() actor_loss.backward() nn.utils.clip_grad_norm_(self.actor_model.parameters(), self.args.grad_clip_norm, norm_type=2) self.actor_optimizer.step() for p in self.world_param: p.requires_grad = True for p in self.value_model.parameters(): p.requires_grad = True for p in self.value_model2.parameters(): p.requires_grad = True # update critic imag_beliefs = imag_beliefs.detach() imag_states = imag_states.detach() critic_loss = self._compute_loss_critic( imag_beliefs, imag_states, imag_ac_logps=imag_ac_logps) self.value_optimizer.zero_grad() critic_loss.backward() nn.utils.clip_grad_norm_(self.value_model.parameters(), self.args.grad_clip_norm, norm_type=2) nn.utils.clip_grad_norm_(self.value_model2.parameters(), self.args.grad_clip_norm, norm_type=2) self.value_optimizer.step() loss_info.append([ observation_loss.item(), reward_loss.item(), kl_loss.item(), pcont_loss.item() if self.args.pcont else 0, actor_loss.item(), critic_loss.item() ]) # finally, update target value function every #gradient_steps with torch.no_grad(): self.target_value_model.load_state_dict( self.value_model.state_dict()) with torch.no_grad(): self.target_value_model2.load_state_dict( self.value_model2.state_dict()) return loss_info def infer_state(self, observation, action, belief=None, state=None): """ Infer belief over current state q(s_t|o≤t,a<t) from the history, return updated belief and posterior_state at time t returned shape: belief/state [belief/state_dim] (remove the time_dim) """ # observation is obs.to(device), action.shape=[act_dim] (will add time dim inside this fn), belief.shape belief, _, _, _, posterior_state, _, _ = self.transition_model( state, action.unsqueeze(dim=0), belief, self.encoder(observation).unsqueeze( dim=0)) # Action and observation need extra time dimension belief, posterior_state = belief.squeeze( dim=0), posterior_state.squeeze( dim=0) # Remove time dimension from belief/state return belief, posterior_state def select_action(self, state, deterministic=False): # get action with the inputs get from fn: infer_state; return a numpy with shape [batch, act_size] belief, posterior_state = state action, _ = self.actor_model(belief, posterior_state, deterministic=deterministic, with_logprob=False) if not deterministic and not self.args.with_logprob: print("e") action = Normal(action, self.args.expl_amount).rsample() # clip the angle action[:, 0].clamp_(min=self.args.angle_min, max=self.args.angle_max) # clip the throttle if self.args.fix_speed: action[:, 1] = self.args.throttle_base else: action[:, 1].clamp_(min=self.args.throttle_min, max=self.args.throttle_max) print("action", action) # return action.cup().numpy() return action # this is a Tonsor.cuda def import_parameters(self, params): # only import or export the parameters used when local rollout self.encoder.load_state_dict(params["encoder"]) self.actor_model.load_state_dict(params["policy"]) self.transition_model.load_state_dict(params["transition"]) def export_parameters(self): """ return the model paras used for local rollout """ params = { "encoder": self.encoder.cpu().state_dict(), "policy": self.actor_model.cpu().state_dict(), "transition": self.transition_model.cpu().state_dict() } self.encoder.to(self.args.device) self.actor_model.to(self.args.device) self.transition_model.to(self.args.device) return params