コード例 #1
0
class Plan(object):
    def __init__(self):

        self.results_dir = os.path.join(
            'results',
            '{}_seed_{}_{}_action_scale_{}_no_explore_{}_pool_len_{}_optimisation_iters_{}_top_planning-horizon'
            .format(args.env, args.seed, args.algo, args.action_scale,
                    args.pool_len, args.optimisation_iters,
                    args.top_planning_horizon))

        args.results_dir = self.results_dir
        args.MultiGPU = True if torch.cuda.device_count(
        ) > 1 and args.MultiGPU else False

        self.__basic_setting()
        self.__init_sample()  # Sampleing The Init Data

        # Initialise model parameters randomly
        self.transition_model = TransitionModel(
            args.belief_size, args.state_size, self.env.action_size,
            args.hidden_size, args.embedding_size,
            args.dense_activation_function).to(device=args.device)
        self.observation_model = ObservationModel(
            args.symbolic_env, self.env.observation_size, args.belief_size,
            args.state_size, args.embedding_size,
            args.cnn_activation_function).to(device=args.device)
        self.reward_model = RewardModel(
            args.belief_size, args.state_size, args.hidden_size,
            args.dense_activation_function).to(device=args.device)
        self.encoder = Encoder(
            args.symbolic_env, self.env.observation_size, args.embedding_size,
            args.cnn_activation_function).to(device=args.device)

        print("We Have {} GPUS".format(torch.cuda.device_count())
              ) if args.MultiGPU else print("We use CPU")
        self.transition_model = nn.DataParallel(
            self.transition_model.to(device=args.device)
        ) if args.MultiGPU else self.transition_model
        self.observation_model = nn.DataParallel(
            self.observation_model.to(device=args.device)
        ) if args.MultiGPU else self.observation_model
        self.reward_model = nn.DataParallel(
            self.reward_model.to(
                device=args.device)) if args.MultiGPU else self.reward_model

        # encoder = nn.DataParallel(encoder.cuda())
        # actor_model = nn.DataParallel(actor_model.cuda())
        # value_model = nn.DataParallel(value_model.cuda())

        # share the global parameters in multiprocessing
        self.encoder.share_memory()
        self.observation_model.share_memory()
        self.reward_model.share_memory()

        # Set all_model/global_actor_optimizer/global_value_optimizer
        self.param_list = list(self.transition_model.parameters()) + list(
            self.observation_model.parameters()) + list(
                self.reward_model.parameters()) + list(
                    self.encoder.parameters())
        self.model_optimizer = optim.Adam(
            self.param_list,
            lr=0
            if args.learning_rate_schedule != 0 else args.model_learning_rate,
            eps=args.adam_epsilon)

    def update_belief_and_act(self,
                              args,
                              env,
                              belief,
                              posterior_state,
                              action,
                              observation,
                              explore=False):
        # Infer belief over current state q(s_t|o≤t,a<t) from the history
        # print("action size: ",action.size()) torch.Size([1, 6])
        belief, _, _, _, posterior_state, _, _ = self.upper_transition_model(
            posterior_state, action.unsqueeze(dim=0), belief,
            self.encoder(observation).unsqueeze(dim=0), None)
        if hasattr(env, "envs"):
            belief, posterior_state = list(
                map(lambda x: x.view(-1, args.test_episodes, x.shape[2]),
                    [x for x in [belief, posterior_state]]))

        belief, posterior_state = belief.squeeze(
            dim=0), posterior_state.squeeze(
                dim=0)  # Remove time dimension from belief/state
        action = self.algorithms.get_action(belief, posterior_state, explore)

        if explore:
            action = torch.clamp(
                Normal(action, args.action_noise).rsample(), -1, 1
            )  # Add gaussian exploration noise on top of the sampled action
            # action = action + args.action_noise * torch.randn_like(action)  # Add exploration noise ε ~ p(ε) to the action
        next_observation, reward, done = env.step(
            action.cpu() if isinstance(env, EnvBatcher) else action[0].cpu(
            ))  # Perform environment step (action repeats handled internally)
        return belief, posterior_state, action, next_observation, reward, done

    def run(self):
        if args.algo == "dreamer":
            print("DREAMER")
            from algorithms.dreamer import Algorithms
            self.algorithms = Algorithms(self.env.action_size,
                                         self.transition_model, self.encoder,
                                         self.reward_model,
                                         self.observation_model)
        elif args.algo == "p2p":
            print("planing to plan")
            from algorithms.plan_to_plan import Algorithms
            self.algorithms = Algorithms(self.env.action_size,
                                         self.transition_model, self.encoder,
                                         self.reward_model,
                                         self.observation_model)
        elif args.algo == "actor_pool_1":
            print("async sub actor")
            from algorithms.actor_pool_1 import Algorithms_actor
            self.algorithms = Algorithms_actor(self.env.action_size,
                                               self.transition_model,
                                               self.encoder, self.reward_model,
                                               self.observation_model)
        elif args.algo == "aap":
            from algorithms.asynchronous_actor_planet import Algorithms
            self.algorithms = Algorithms(self.env.action_size,
                                         self.transition_model, self.encoder,
                                         self.reward_model,
                                         self.observation_model)
        else:
            print("planet")
            from algorithms.planet import Algorithms
            # args.MultiGPU = False
            self.algorithms = Algorithms(self.env.action_size,
                                         self.transition_model,
                                         self.reward_model)

        if args.test: self.test_only()

        self.global_prior = Normal(
            torch.zeros(args.batch_size, args.state_size, device=args.device),
            torch.ones(args.batch_size, args.state_size,
                       device=args.device))  # Global prior N(0, I)
        self.free_nats = torch.full(
            (1, ), args.free_nats,
            device=args.device)  # Allowed deviation in KL divergence

        # Training (and testing)
        # args.episodes = 1
        for episode in tqdm(range(self.metrics['episodes'][-1] + 1,
                                  args.episodes + 1),
                            total=args.episodes,
                            initial=self.metrics['episodes'][-1] + 1):
            losses = self.train()
            # self.algorithms.save_loss_data(self.metrics['episodes']) # Update and plot loss metrics
            self.save_loss_data(tuple(
                zip(*losses)))  # Update and plot loss metrics
            self.data_collection(episode=episode)  # Data collection
            # args.test_interval = 1
            if episode % args.test_interval == 0:
                self.test(episode=episode)  # Test model
            self.save_model_data(episode=episode)  # save model

        self.env.close()  # Close training environment

    def train_env_model(self, beliefs, prior_states, prior_means,
                        prior_std_devs, posterior_states, posterior_means,
                        posterior_std_devs, observations, actions, rewards,
                        nonterminals):
        # Calculate observation likelihood, reward likelihood and KL losses (for t = 0 only for latent overshooting); sum over final dims, average over batch and time (original implementation, though paper seems to miss 1/T scaling?)
        if args.worldmodel_LogProbLoss:
            observation_dist = Normal(
                bottle(self.observation_model, (beliefs, posterior_states)), 1)
            observation_loss = -observation_dist.log_prob(
                observations[1:]).sum(
                    dim=2 if args.symbolic_env else (2, 3, 4)).mean(dim=(0, 1))
        else:
            observation_loss = F.mse_loss(
                bottle(self.observation_model, (beliefs, posterior_states)),
                observations[1:],
                reduction='none').sum(
                    dim=2 if args.symbolic_env else (2, 3, 4)).mean(dim=(0, 1))
        if args.worldmodel_LogProbLoss:
            reward_dist = Normal(
                bottle(self.reward_model, (beliefs, posterior_states)), 1)
            reward_loss = -reward_dist.log_prob(rewards[:-1]).mean(dim=(0, 1))
        else:
            reward_loss = F.mse_loss(bottle(self.reward_model,
                                            (beliefs, posterior_states)),
                                     rewards[:-1],
                                     reduction='none').mean(dim=(0, 1))

        # transition loss
        div = kl_divergence(Normal(posterior_means, posterior_std_devs),
                            Normal(prior_means, prior_std_devs)).sum(dim=2)
        kl_loss = torch.max(div, self.free_nats).mean(
            dim=(0, 1)
        )  # Note that normalisation by overshooting distance and weighting by overshooting distance cancel out
        if args.global_kl_beta != 0:
            kl_loss += args.global_kl_beta * kl_divergence(
                Normal(posterior_means, posterior_std_devs),
                self.global_prior).sum(dim=2).mean(dim=(0, 1))
        # Calculate latent overshooting objective for t > 0
        if args.overshooting_kl_beta != 0:
            overshooting_vars = [
            ]  # Collect variables for overshooting to process in batch
            for t in range(1, args.chunk_size - 1):
                d = min(t + args.overshooting_distance,
                        args.chunk_size - 1)  # Overshooting distance
                t_, d_ = t - 1, d - 1  # Use t_ and d_ to deal with different time indexing for latent states
                seq_pad = (
                    0, 0, 0, 0, 0, t - d + args.overshooting_distance
                )  # Calculate sequence padding so overshooting terms can be calculated in one batch
                # Store (0) actions, (1) nonterminals, (2) rewards, (3) beliefs, (4) prior states, (5) posterior means, (6) posterior standard deviations and (7) sequence masks
                overshooting_vars.append(
                    (F.pad(actions[t:d],
                           seq_pad), F.pad(nonterminals[t:d], seq_pad),
                     F.pad(rewards[t:d],
                           seq_pad[2:]), beliefs[t_], prior_states[t_],
                     F.pad(posterior_means[t_ + 1:d_ + 1].detach(), seq_pad),
                     F.pad(posterior_std_devs[t_ + 1:d_ + 1].detach(),
                           seq_pad,
                           value=1),
                     F.pad(
                         torch.ones(d - t,
                                    args.batch_size,
                                    args.state_size,
                                    device=args.device), seq_pad))
                )  # Posterior standard deviations must be padded with > 0 to prevent infinite KL divergences
            overshooting_vars = tuple(zip(*overshooting_vars))
            # Update belief/state using prior from previous belief/state and previous action (over entire sequence at once)
            beliefs, prior_states, prior_means, prior_std_devs = self.upper_transition_model(
                torch.cat(overshooting_vars[4], dim=0),
                torch.cat(overshooting_vars[0], dim=1),
                torch.cat(overshooting_vars[3], dim=0), None,
                torch.cat(overshooting_vars[1], dim=1))
            seq_mask = torch.cat(overshooting_vars[7], dim=1)
            # Calculate overshooting KL loss with sequence mask
            kl_loss += (
                1 / args.overshooting_distance
            ) * args.overshooting_kl_beta * torch.max((kl_divergence(
                Normal(torch.cat(overshooting_vars[5], dim=1),
                       torch.cat(overshooting_vars[6], dim=1)),
                Normal(prior_means, prior_std_devs)
            ) * seq_mask).sum(dim=2), self.free_nats).mean(dim=(0, 1)) * (
                args.chunk_size
                - 1
            )  # Update KL loss (compensating for extra average over each overshooting/open loop sequence)
            # Calculate overshooting reward prediction loss with sequence mask
            if args.overshooting_reward_scale != 0:
                reward_loss += (
                    1 / args.overshooting_distance
                ) * args.overshooting_reward_scale * F.mse_loss(
                    bottle(self.reward_model,
                           (beliefs, prior_states)) * seq_mask[:, :, 0],
                    torch.cat(overshooting_vars[2], dim=1),
                    reduction='none'
                ).mean(dim=(0, 1)) * (
                    args.chunk_size - 1
                )  # Update reward loss (compensating for extra average over each overshooting/open loop sequence)
        # Apply linearly ramping learning rate schedule
        if args.learning_rate_schedule != 0:
            for group in self.model_optimizer.param_groups:
                group['lr'] = min(
                    group['lr'] + args.model_learning_rate /
                    args.model_learning_rate_schedule,
                    args.model_learning_rate)
        model_loss = observation_loss + reward_loss + kl_loss
        # Update model parameters
        self.model_optimizer.zero_grad()
        model_loss.backward()
        nn.utils.clip_grad_norm_(self.param_list,
                                 args.grad_clip_norm,
                                 norm_type=2)
        self.model_optimizer.step()
        return observation_loss, reward_loss, kl_loss

    def train(self):
        # Model fitting
        losses = []
        print("training loop")
        # args.collect_interval = 1
        for s in tqdm(range(args.collect_interval)):

            # Draw sequence chunks {(o_t, a_t, r_t+1, terminal_t+1)} ~ D uniformly at random from the dataset (including terminal flags)
            observations, actions, rewards, nonterminals = self.D.sample(
                args.batch_size,
                args.chunk_size)  # Transitions start at time t = 0
            # Create initial belief and state for time t = 0
            init_belief, init_state = torch.zeros(
                args.batch_size, args.belief_size,
                device=args.device), torch.zeros(args.batch_size,
                                                 args.state_size,
                                                 device=args.device)
            # Update belief/state using posterior from previous belief/state, previous action and current observation (over entire sequence at once)
            obs = bottle(self.encoder, (observations[1:], ))
            beliefs, prior_states, prior_means, prior_std_devs, posterior_states, posterior_means, posterior_std_devs = self.upper_transition_model(
                prev_state=init_state,
                actions=actions[:-1],
                prev_belief=init_belief,
                obs=obs,
                nonterminals=nonterminals[:-1])

            # Calculate observation likelihood, reward likelihood and KL losses (for t = 0 only for latent overshooting); sum over final dims, average over batch and time (original implementation, though paper seems to miss 1/T scaling?)
            observation_loss, reward_loss, kl_loss = self.train_env_model(
                beliefs, prior_states, prior_means, prior_std_devs,
                posterior_states, posterior_means, posterior_std_devs,
                observations, actions, rewards, nonterminals)

            # Dreamer implementation: actor loss calculation and optimization
            with torch.no_grad():
                actor_states = posterior_states.detach().to(
                    device=args.device).share_memory_()
                actor_beliefs = beliefs.detach().to(
                    device=args.device).share_memory_()

            # if not os.path.exists(os.path.join(os.getcwd(), 'tensor_data/' + args.results_dir)): os.mkdir(os.path.join(os.getcwd(), 'tensor_data/' + args.results_dir))
            torch.save(
                actor_states,
                os.path.join(os.getcwd(),
                             args.results_dir + '/actor_states.pt'))
            torch.save(
                actor_beliefs,
                os.path.join(os.getcwd(),
                             args.results_dir + '/actor_beliefs.pt'))

            # [self.actor_pipes[i][0].send(1) for i, w in enumerate(self.workers_actor)]  # Parent_pipe send data using i'th pipes
            # [self.actor_pipes[i][0].recv() for i, _ in enumerate(self.actor_pool)]  # waitting the children finish

            self.algorithms.train_algorithm(actor_states, actor_beliefs)
            losses.append(
                [observation_loss.item(),
                 reward_loss.item(),
                 kl_loss.item()])

            # if self.algorithms.train_algorithm(actor_states, actor_beliefs) is not None:
            #   merge_actor_loss, merge_value_loss = self.algorithms.train_algorithm(actor_states, actor_beliefs)
            #   losses.append([observation_loss.item(), reward_loss.item(), kl_loss.item(), merge_actor_loss.item(), merge_value_loss.item()])
            # else:
            #   losses.append([observation_loss.item(), reward_loss.item(), kl_loss.item()])

        return losses

    def data_collection(self, episode):
        print("Data collection")
        with torch.no_grad():
            observation, total_reward = self.env.reset(), 0
            belief, posterior_state, action = torch.zeros(
                1, args.belief_size, device=args.device), torch.zeros(
                    1, args.state_size,
                    device=args.device), torch.zeros(1,
                                                     self.env.action_size,
                                                     device=args.device)
            pbar = tqdm(range(args.max_episode_length // args.action_repeat))
            for t in pbar:
                # print("step",t)
                belief, posterior_state, action, next_observation, reward, done = self.update_belief_and_act(
                    args, self.env, belief, posterior_state, action,
                    observation.to(device=args.device))
                self.D.append(observation, action.cpu(), reward, done)
                total_reward += reward
                observation = next_observation
                if args.render: self.env.render()
                if done:
                    pbar.close()
                    break

            # Update and plot train reward metrics
            self.metrics['steps'].append(t + self.metrics['steps'][-1])
            self.metrics['episodes'].append(episode)
            self.metrics['train_rewards'].append(total_reward)

            Save_Txt(self.metrics['episodes'][-1],
                     self.metrics['train_rewards'][-1], 'train_rewards',
                     args.results_dir)
            # lineplot(metrics['episodes'][-len(metrics['train_rewards']):], metrics['train_rewards'], 'train_rewards', results_dir)

    def test(self, episode):
        print("Test model")
        # Set models to eval mode
        self.transition_model.eval()
        self.observation_model.eval()
        self.reward_model.eval()
        self.encoder.eval()
        self.algorithms.train_to_eval()
        # self.actor_model_g.eval()
        # self.value_model_g.eval()
        # Initialise parallelised test environments
        test_envs = EnvBatcher(
            Env, (args.env, args.symbolic_env, args.seed,
                  args.max_episode_length, args.action_repeat, args.bit_depth),
            {}, args.test_episodes)

        with torch.no_grad():
            observation, total_rewards, video_frames = test_envs.reset(
            ), np.zeros((args.test_episodes, )), []
            belief, posterior_state, action = torch.zeros(
                args.test_episodes, args.belief_size,
                device=args.device), torch.zeros(
                    args.test_episodes, args.state_size,
                    device=args.device), torch.zeros(args.test_episodes,
                                                     self.env.action_size,
                                                     device=args.device)
            pbar = tqdm(range(args.max_episode_length // args.action_repeat))
            for t in pbar:
                belief, posterior_state, action, next_observation, reward, done = self.update_belief_and_act(
                    args, test_envs, belief, posterior_state, action,
                    observation.to(device=args.device))
                total_rewards += reward.numpy()
                if not args.symbolic_env:  # Collect real vs. predicted frames for video
                    video_frames.append(
                        make_grid(torch.cat([
                            observation,
                            self.observation_model(belief,
                                                   posterior_state).cpu()
                        ],
                                            dim=3) + 0.5,
                                  nrow=5).numpy())  # Decentre
                observation = next_observation
                if done.sum().item() == args.test_episodes:
                    pbar.close()
                    break

        # Update and plot reward metrics (and write video if applicable) and save metrics
        self.metrics['test_episodes'].append(episode)
        self.metrics['test_rewards'].append(total_rewards.tolist())

        Save_Txt(self.metrics['test_episodes'][-1],
                 self.metrics['test_rewards'][-1], 'test_rewards',
                 args.results_dir)
        # Save_Txt(np.asarray(metrics['steps'])[np.asarray(metrics['test_episodes']) - 1], metrics['test_rewards'],'test_rewards_steps', results_dir, xaxis='step')

        # lineplot(metrics['test_episodes'], metrics['test_rewards'], 'test_rewards', results_dir)
        # lineplot(np.asarray(metrics['steps'])[np.asarray(metrics['test_episodes']) - 1], metrics['test_rewards'], 'test_rewards_steps', results_dir, xaxis='step')
        if not args.symbolic_env:
            episode_str = str(episode).zfill(len(str(args.episodes)))
            write_video(video_frames, 'test_episode_%s' % episode_str,
                        args.results_dir)  # Lossy compression
            save_image(
                torch.as_tensor(video_frames[-1]),
                os.path.join(args.results_dir,
                             'test_episode_%s.png' % episode_str))

        torch.save(self.metrics, os.path.join(args.results_dir, 'metrics.pth'))

        # Set models to train mode
        self.transition_model.train()
        self.observation_model.train()
        self.reward_model.train()
        self.encoder.train()
        # self.actor_model_g.train()
        # self.value_model_g.train()
        self.algorithms.eval_to_train()
        # Close test environments
        test_envs.close()

    def test_only(self):
        # Set models to eval mode
        self.transition_model.eval()
        self.reward_model.eval()
        self.encoder.eval()
        with torch.no_grad():
            total_reward = 0
            for _ in tqdm(range(args.test_episodes)):
                observation = self.env.reset()
                belief, posterior_state, action = torch.zeros(
                    1, args.belief_size, device=args.device), torch.zeros(
                        1, args.state_size,
                        device=args.device), torch.zeros(1,
                                                         self.env.action_size,
                                                         device=args.device)
                pbar = tqdm(
                    range(args.max_episode_length // args.action_repeat))
                for t in pbar:
                    belief, posterior_state, action, observation, reward, done = self.update_belief_and_act(
                        args, self.env, belief, posterior_state, action,
                        observation.to(evice=args.device))
                    total_reward += reward
                    if args.render: self.env.render()
                    if done:
                        pbar.close()
                        break
        print('Average Reward:', total_reward / args.test_episodes)
        self.env.close()
        quit()

    def __basic_setting(self):
        args.overshooting_distance = min(
            args.chunk_size, args.overshooting_distance
        )  # Overshooting distance cannot be greater than chunk size
        print(' ' * 26 + 'Options')
        for k, v in vars(args).items():
            print(' ' * 26 + k + ': ' + str(v))

        print("torch.cuda.device_count() {}".format(torch.cuda.device_count()))
        os.makedirs(args.results_dir, exist_ok=True)
        np.random.seed(args.seed)
        torch.manual_seed(args.seed)
        # Set Cuda
        if torch.cuda.is_available() and not args.disable_cuda:
            print("using CUDA")
            args.device = torch.device('cuda')
            torch.cuda.manual_seed(args.seed)
        else:
            print("using CPU")
            args.device = torch.device('cpu')

        self.summary_name = args.results_dir + "/{}_{}_log"
        self.writer = SummaryWriter(self.summary_name.format(
            args.env, args.id))
        self.env = Env(args.env, args.symbolic_env, args.seed,
                       args.max_episode_length, args.action_repeat,
                       args.bit_depth)
        self.metrics = {
            'steps': [],
            'episodes': [],
            'train_rewards': [],
            'test_episodes': [],
            'test_rewards': [],
            'observation_loss': [],
            'reward_loss': [],
            'kl_loss': [],
            'merge_actor_loss': [],
            'merge_value_loss': []
        }

    def __init_sample(self):
        if args.experience_replay is not '' and os.path.exists(
                args.experience_replay):
            self.D = torch.load(args.experience_replay)
            self.metrics['steps'], self.metrics['episodes'] = [
                self.D.steps
            ] * self.D.episodes, list(range(1, self.D.episodes + 1))
        elif not args.test:
            self.D = ExperienceReplay(args.experience_size, args.symbolic_env,
                                      self.env.observation_size,
                                      self.env.action_size, args.bit_depth,
                                      args.device)

            # Initialise dataset D with S random seed episodes
            print(
                "Start Multi Sample Processing -------------------------------"
            )
            start_time = time.time()
            data_lists = [
                Manager().list() for i in range(1, args.seed_episodes + 1)
            ]  # Set Global Lists
            pipes = [Pipe() for i in range(1, args.seed_episodes + 1)
                     ]  # Set Multi Pipe
            workers_init_sample = [
                Worker_init_Sample(child_conn=child, id=i + 1)
                for i, [parent, child] in enumerate(pipes)
            ]

            for i, w in enumerate(workers_init_sample):
                w.start()  # Start Single Process
                pipes[i][0].send(
                    data_lists[i])  # Parent_pipe send data using i'th pipes
            [w.join() for w in workers_init_sample]  # wait sub_process done

            for i, [parent, child] in enumerate(pipes):
                # datas = parent.recv()
                for data in list(parent.recv()):
                    if isinstance(data, tuple):
                        assert len(data) == 4
                        self.D.append(data[0], data[1], data[2], data[3])
                    elif isinstance(data, int):
                        t = data
                        self.metrics['steps'].append(t * args.action_repeat + (
                            0 if len(self.metrics['steps']) ==
                            0 else self.metrics['steps'][-1]))
                        self.metrics['episodes'].append(i + 1)
                    else:
                        print(
                            "The Recvive Data Have Some Problems, Need To Fix")
            end_time = time.time()
            print("the process times {} s".format(end_time - start_time))
            print(
                "End Multi Sample Processing -------------------------------")

    def upper_transition_model(self, prev_state, actions, prev_belief, obs,
                               nonterminals):
        actions = torch.transpose(actions, 0, 1) if args.MultiGPU else actions
        nonterminals = torch.transpose(nonterminals, 0, 1).to(
            device=args.device
        ) if args.MultiGPU and nonterminals is not None else nonterminals
        obs = torch.transpose(obs, 0, 1).to(
            device=args.device) if args.MultiGPU and obs is not None else obs
        temp_val = self.transition_model(prev_state.to(device=args.device),
                                         actions.to(device=args.device),
                                         prev_belief.to(device=args.device),
                                         obs, nonterminals)

        return list(
            map(
                lambda x: torch.cat(x.chunk(torch.cuda.device_count(), 0), 1)
                if x.shape[1] != prev_state.shape[0] else x,
                [x for x in temp_val]))

    def save_loss_data(self, losses):
        self.metrics['observation_loss'].append(losses[0])
        self.metrics['reward_loss'].append(losses[1])
        self.metrics['kl_loss'].append(losses[2])
        self.metrics['merge_actor_loss'].append(
            losses[3]) if losses.__len__() > 3 else None
        self.metrics['merge_value_loss'].append(
            losses[4]) if losses.__len__() > 3 else None

        Save_Txt(self.metrics['episodes'][-1],
                 self.metrics['observation_loss'][-1], 'observation_loss',
                 args.results_dir)
        Save_Txt(self.metrics['episodes'][-1], self.metrics['reward_loss'][-1],
                 'reward_loss', args.results_dir)
        Save_Txt(self.metrics['episodes'][-1], self.metrics['kl_loss'][-1],
                 'kl_loss', args.results_dir)
        Save_Txt(self.metrics['episodes'][-1],
                 self.metrics['merge_actor_loss'][-1], 'merge_actor_loss',
                 args.results_dir) if losses.__len__() > 3 else None
        Save_Txt(self.metrics['episodes'][-1],
                 self.metrics['merge_value_loss'][-1], 'merge_value_loss',
                 args.results_dir) if losses.__len__() > 3 else None

        # lineplot(metrics['episodes'][-len(metrics['observation_loss']):], metrics['observation_loss'], 'observation_loss', results_dir)
        # lineplot(metrics['episodes'][-len(metrics['reward_loss']):], metrics['reward_loss'], 'reward_loss', results_dir)
        # lineplot(metrics['episodes'][-len(metrics['kl_loss']):], metrics['kl_loss'], 'kl_loss', results_dir)
        # lineplot(metrics['episodes'][-len(metrics['actor_loss']):], metrics['actor_loss'], 'actor_loss', results_dir)
        # lineplot(metrics['episodes'][-len(metrics['value_loss']):], metrics['value_loss'], 'value_loss', results_dir)

    def save_model_data(self, episode):
        # writer.add_scalar("train_reward", metrics['train_rewards'][-1], metrics['steps'][-1])
        # writer.add_scalar("train/episode_reward", metrics['train_rewards'][-1], metrics['steps'][-1]*args.action_repeat)
        # writer.add_scalar("observation_loss", metrics['observation_loss'][0][-1], metrics['steps'][-1])
        # writer.add_scalar("reward_loss", metrics['reward_loss'][0][-1], metrics['steps'][-1])
        # writer.add_scalar("kl_loss", metrics['kl_loss'][0][-1], metrics['steps'][-1])
        # writer.add_scalar("actor_loss", metrics['actor_loss'][0][-1], metrics['steps'][-1])
        # writer.add_scalar("value_loss", metrics['value_loss'][0][-1], metrics['steps'][-1])
        # print("episodes: {}, total_steps: {}, train_reward: {} ".format(metrics['episodes'][-1], metrics['steps'][-1], metrics['train_rewards'][-1]))

        # Checkpoint models
        if episode % args.checkpoint_interval == 0:
            # torch.save({'transition_model': transition_model.state_dict(),
            #             'observation_model': observation_model.state_dict(),
            #             'reward_model': reward_model.state_dict(),
            #             'encoder': encoder.state_dict(),
            #             'actor_model': actor_model_g.state_dict(),
            #             'value_model': value_model_g.state_dict(),
            #             'model_optimizer': model_optimizer.state_dict(),
            #             'actor_optimizer': actor_optimizer_g.state_dict(),
            #             'value_optimizer': value_optimizer_g.state_dict()
            #             }, os.path.join(results_dir, 'models_%d.pth' % episode))
            if args.checkpoint_experience:
                torch.save(
                    self.D, os.path.join(args.results_dir, 'experience.pth')
                )  # Warning: will fail with MemoryError with large memory sizes
コード例 #2
0
class Dreamer(Agent):
    # The agent has its own replay buffer, update, act
    def __init__(self, args):
        """
    All paras are passed by args
    :param args: a dict that includes parameters
    """
        super().__init__()
        self.args = args
        # Initialise model parameters randomly
        self.transition_model = TransitionModel(
            args.belief_size, args.state_size, args.action_size,
            args.hidden_size, args.embedding_size,
            args.dense_act).to(device=args.device)

        self.observation_model = ObservationModel(
            args.symbolic,
            args.observation_size,
            args.belief_size,
            args.state_size,
            args.embedding_size,
            activation_function=(args.dense_act if args.symbolic else
                                 args.cnn_act)).to(device=args.device)

        self.reward_model = RewardModel(args.belief_size, args.state_size,
                                        args.hidden_size,
                                        args.dense_act).to(device=args.device)

        self.encoder = Encoder(args.symbolic, args.observation_size,
                               args.embedding_size,
                               args.cnn_act).to(device=args.device)

        self.actor_model = ActorModel(
            args.action_size,
            args.belief_size,
            args.state_size,
            args.hidden_size,
            activation_function=args.dense_act,
            fix_speed=args.fix_speed,
            throttle_base=args.throttle_base).to(device=args.device)

        self.value_model = ValueModel(args.belief_size, args.state_size,
                                      args.hidden_size,
                                      args.dense_act).to(device=args.device)

        self.value_model2 = ValueModel(args.belief_size, args.state_size,
                                       args.hidden_size,
                                       args.dense_act).to(device=args.device)

        self.pcont_model = PCONTModel(args.belief_size, args.state_size,
                                      args.hidden_size,
                                      args.dense_act).to(device=args.device)

        self.target_value_model = deepcopy(self.value_model)
        self.target_value_model2 = deepcopy(self.value_model2)

        for p in self.target_value_model.parameters():
            p.requires_grad = False
        for p in self.target_value_model2.parameters():
            p.requires_grad = False

        # setup the paras to update
        self.world_param = list(self.transition_model.parameters())\
                          + list(self.observation_model.parameters())\
                          + list(self.reward_model.parameters())\
                          + list(self.encoder.parameters())
        if args.pcont:
            self.world_param += list(self.pcont_model.parameters())

        # setup optimizer
        self.world_optimizer = optim.Adam(self.world_param, lr=args.world_lr)
        self.actor_optimizer = optim.Adam(self.actor_model.parameters(),
                                          lr=args.actor_lr)
        self.value_optimizer = optim.Adam(list(self.value_model.parameters()) +
                                          list(self.value_model2.parameters()),
                                          lr=args.value_lr)

        # setup the free_nat to
        self.free_nats = torch.full(
            (1, ), args.free_nats, dtype=torch.float32,
            device=args.device)  # Allowed deviation in KL divergence

        # TODO: change it to the new replay buffer, in buffer.py
        self.D = ExperienceReplay(args.experience_size, args.symbolic,
                                  args.observation_size, args.action_size,
                                  args.bit_depth, args.device)

        if self.args.auto_temp:
            # setup for learning of alpha term (temp of the entropy term)
            self.log_temp = torch.zeros(1,
                                        requires_grad=True,
                                        device=args.device)
            self.target_entropy = -np.prod(
                args.action_size if not args.fix_speed else self.args.
                action_size - 1).item()  # heuristic value from SAC paper
            self.temp_optimizer = optim.Adam(
                [self.log_temp], lr=args.value_lr)  # use the same value_lr

        # TODO: print out the param used in Dreamer
        # var_counts = tuple(count_vars(module) for module in [self., self.ac.q1, self.ac.q2])
        # print('\nNumber of parameters: \t pi: %d, \t q1: %d, \t q2: %d\n' % var_counts)

    # def process_im(self, image, image_size=None, rgb=None):
    #   # Resize, put channel first, convert it to a tensor, centre it to [-0.5, 0.5] and add batch dimenstion.
    #
    #   def preprocess_observation_(observation, bit_depth):
    #     # Preprocesses an observation inplace (from float32 Tensor [0, 255] to [-0.5, 0.5])
    #     observation.div_(2 ** (8 - bit_depth)).floor_().div_(2 ** bit_depth).sub_(
    #       0.5)  # Quantise to given bit depth and centre
    #     observation.add_(torch.rand_like(observation).div_(
    #       2 ** bit_depth))  # Dequantise (to approx. match likelihood of PDF of continuous images vs. PMF of discrete images)
    #
    #   image = image[40:, :, :]  # clip the above 40 rows
    #   image = torch.tensor(cv2.resize(image, (40, 40), interpolation=cv2.INTER_LINEAR).transpose(2, 0, 1),
    #                         dtype=torch.float32)  # Resize and put channel first
    #
    #   preprocess_observation_(image, self.args.bit_depth)
    #   return image.unsqueeze(dim=0)
    def process_im(self, images, image_size=None, rgb=None):
        images = cv2.resize(images, (40, 40))
        images = np.dot(images, [0.299, 0.587, 0.114])
        obs = torch.tensor(images,
                           dtype=torch.float32).div_(255.).sub_(0.5).unsqueeze(
                               dim=0)  # shape [1, 40, 40], range:[-0.5,0.5]
        return obs.unsqueeze(dim=0)  # add batch dimension

    def append_buffer(self, new_traj):
        # append new collected trajectory, not implement the data augmentation
        # shape of new_traj: [(o, a, r, d) * steps]
        for state in new_traj:
            observation, action, reward, done = state
            self.D.append(observation, action.cpu(), reward, done)

    def _compute_loss_world(self, state, data):
        # unpackage data
        beliefs, prior_states, prior_means, prior_std_devs, posterior_states, posterior_means, posterior_std_devs = state
        observations, rewards, nonterminals = data

        # observation_loss = F.mse_loss(
        #   bottle(self.observation_model, (beliefs, posterior_states)),
        #   observations[1:],
        #   reduction='none').sum(dim=2 if self.args.symbolic else (2, 3, 4)).mean(dim=(0, 1))
        #
        # reward_loss = F.mse_loss(
        #   bottle(self.reward_model, (beliefs, posterior_states)),
        #   rewards[1:],
        #   reduction='none').mean(dim=(0,1))

        observation_loss = F.mse_loss(
            bottle(self.observation_model, (beliefs, posterior_states)),
            observations,
            reduction='none').sum(
                dim=2 if self.args.symbolic else (2, 3, 4)).mean(dim=(0, 1))

        reward_loss = F.mse_loss(bottle(self.reward_model,
                                        (beliefs, posterior_states)),
                                 rewards,
                                 reduction='none').mean(dim=(0, 1))  # TODO: 5

        # transition loss
        kl_loss = torch.max(
            kl_divergence(
                Independent(Normal(posterior_means, posterior_std_devs), 1),
                Independent(Normal(prior_means, prior_std_devs), 1)),
            self.free_nats).mean(dim=(0, 1))

        # print("check the reward", bottle(pcont_model, (beliefs, posterior_states)).shape, nonterminals[:-1].shape)
        if self.args.pcont:
            pcont_loss = F.binary_cross_entropy(
                bottle(self.pcont_model, (beliefs, posterior_states)),
                nonterminals)
            # pcont_pred = torch.distributions.Bernoulli(logits=bottle(self.pcont_model, (beliefs, posterior_states)))
            # pcont_loss = -pcont_pred.log_prob(nonterminals[1:]).mean(dim=(0, 1))

        return observation_loss, self.args.reward_scale * reward_loss, kl_loss, (
            self.args.pcont_scale * pcont_loss if self.args.pcont else 0)

    def _compute_loss_actor(self,
                            imag_beliefs,
                            imag_states,
                            imag_ac_logps=None):
        # reward and value prediction of imagined trajectories
        imag_rewards = bottle(self.reward_model, (imag_beliefs, imag_states))
        imag_values = bottle(self.value_model, (imag_beliefs, imag_states))
        imag_values2 = bottle(self.value_model2, (imag_beliefs, imag_states))
        imag_values = torch.min(imag_values, imag_values2)

        with torch.no_grad():
            if self.args.pcont:
                pcont = bottle(self.pcont_model, (imag_beliefs, imag_states))
            else:
                pcont = self.args.discount * torch.ones_like(imag_rewards)
        pcont = pcont.detach()

        if imag_ac_logps is not None:
            imag_values[
                1:] -= self.args.temp * imag_ac_logps  # add entropy here

        returns = cal_returns(imag_rewards[:-1],
                              imag_values[:-1],
                              imag_values[-1],
                              pcont[:-1],
                              lambda_=self.args.disclam)

        discount = torch.cumprod(
            torch.cat([torch.ones_like(pcont[:1]), pcont[:-2]], 0), 0)
        discount = discount.detach()

        assert list(discount.size()) == list(returns.size())
        actor_loss = -torch.mean(discount * returns)
        return actor_loss

    def _compute_loss_critic(self,
                             imag_beliefs,
                             imag_states,
                             imag_ac_logps=None):

        with torch.no_grad():
            # calculate the target with the target nn
            target_imag_values = bottle(self.target_value_model,
                                        (imag_beliefs, imag_states))
            target_imag_values2 = bottle(self.target_value_model2,
                                         (imag_beliefs, imag_states))
            target_imag_values = torch.min(target_imag_values,
                                           target_imag_values2)
            imag_rewards = bottle(self.reward_model,
                                  (imag_beliefs, imag_states))

            if self.args.pcont:
                pcont = bottle(self.pcont_model, (imag_beliefs, imag_states))
            else:
                pcont = self.args.discount * torch.ones_like(imag_rewards)

        # print("check pcont", pcont)
            if imag_ac_logps is not None:
                target_imag_values[1:] -= self.args.temp * imag_ac_logps

        returns = cal_returns(imag_rewards[:-1],
                              target_imag_values[:-1],
                              target_imag_values[-1],
                              pcont[:-1],
                              lambda_=self.args.disclam)
        target_return = returns.detach()

        value_pred = bottle(self.value_model, (imag_beliefs, imag_states))[:-1]
        value_pred2 = bottle(self.value_model2,
                             (imag_beliefs, imag_states))[:-1]

        value_loss = F.mse_loss(value_pred, target_return,
                                reduction="none").mean(dim=(0, 1))
        value_loss2 = F.mse_loss(value_pred2, target_return,
                                 reduction="none").mean(dim=(0, 1))
        value_loss += value_loss2

        return value_loss

    def _latent_imagination(self,
                            beliefs,
                            posterior_states,
                            with_logprob=False):
        # Rollout to generate imagined trajectories

        chunk_size, batch_size, _ = list(
            posterior_states.size())  # flatten the tensor
        flatten_size = chunk_size * batch_size

        posterior_states = posterior_states.detach().reshape(flatten_size, -1)
        beliefs = beliefs.detach().reshape(flatten_size, -1)

        imag_beliefs, imag_states, imag_ac_logps = [beliefs
                                                    ], [posterior_states], []

        for i in range(self.args.planning_horizon):
            imag_action, imag_ac_logp = self.actor_model(
                imag_beliefs[-1].detach(),
                imag_states[-1].detach(),
                deterministic=False,
                with_logprob=with_logprob,
            )
            imag_action = imag_action.unsqueeze(dim=0)  # add time dim

            # print(imag_states[-1].shape, imag_action.shape, imag_beliefs[-1].shape)
            imag_belief, imag_state, _, _ = self.transition_model(
                imag_states[-1], imag_action, imag_beliefs[-1])
            imag_beliefs.append(imag_belief.squeeze(dim=0))
            imag_states.append(imag_state.squeeze(dim=0))
            if with_logprob:
                imag_ac_logps.append(imag_ac_logp.squeeze(dim=0))

        imag_beliefs = torch.stack(imag_beliefs, dim=0).to(
            self.args.device
        )  # shape [horizon+1, (chuck-1)*batch, belief_size]
        imag_states = torch.stack(imag_states, dim=0).to(self.args.device)
        if with_logprob:
            imag_ac_logps = torch.stack(imag_ac_logps, dim=0).to(
                self.args.device)  # shape [horizon, (chuck-1)*batch]

        return imag_beliefs, imag_states, imag_ac_logps if with_logprob else None

    def update_parameters(self, gradient_steps):
        loss_info = []  # used to record loss
        for s in tqdm(range(gradient_steps)):
            # get state and belief of samples
            observations, actions, rewards, nonterminals = self.D.sample(
                self.args.batch_size, self.args.chunk_size)
            # print("check sampled rewrads", rewards)
            init_belief = torch.zeros(self.args.batch_size,
                                      self.args.belief_size,
                                      device=self.args.device)
            init_state = torch.zeros(self.args.batch_size,
                                     self.args.state_size,
                                     device=self.args.device)

            # Update belief/state using posterior from previous belief/state, previous action and current observation (over entire sequence at once)
            # beliefs, prior_states, prior_means, prior_std_devs, posterior_states, posterior_means, posterior_std_devs = self.transition_model(
            #   init_state,
            #   actions[:-1],
            #   init_belief,
            #   bottle(self.encoder, (observations[1:], )),
            #   nonterminals[:-1])

            beliefs, prior_states, prior_means, prior_std_devs, posterior_states, posterior_means, posterior_std_devs = self.transition_model(
                init_state, actions, init_belief,
                bottle(self.encoder, (observations, )),
                nonterminals)  # TODO: 4

            # update paras of world model
            world_model_loss = self._compute_loss_world(
                state=(beliefs, prior_states, prior_means, prior_std_devs,
                       posterior_states, posterior_means, posterior_std_devs),
                data=(observations, rewards, nonterminals))
            observation_loss, reward_loss, kl_loss, pcont_loss = world_model_loss
            self.world_optimizer.zero_grad()
            (observation_loss + reward_loss + kl_loss + pcont_loss).backward()
            nn.utils.clip_grad_norm_(self.world_param,
                                     self.args.grad_clip_norm,
                                     norm_type=2)
            self.world_optimizer.step()

            # freeze params to save memory
            for p in self.world_param:
                p.requires_grad = False
            for p in self.value_model.parameters():
                p.requires_grad = False
            for p in self.value_model2.parameters():
                p.requires_gard = False

            # latent imagination
            imag_beliefs, imag_states, imag_ac_logps = self._latent_imagination(
                beliefs, posterior_states, with_logprob=self.args.with_logprob)

            # update temp
            if self.args.auto_temp:
                temp_loss = -(
                    self.log_temp *
                    (imag_ac_logps[0] + self.target_entropy).detach()).mean()
                self.temp_optimizer.zero_grad()
                temp_loss.backward()
                self.temp_optimizer.step()
                self.args.temp = self.log_temp.exp()

            # update actor
            actor_loss = self._compute_loss_actor(imag_beliefs,
                                                  imag_states,
                                                  imag_ac_logps=imag_ac_logps)

            self.actor_optimizer.zero_grad()
            actor_loss.backward()
            nn.utils.clip_grad_norm_(self.actor_model.parameters(),
                                     self.args.grad_clip_norm,
                                     norm_type=2)
            self.actor_optimizer.step()

            for p in self.world_param:
                p.requires_grad = True
            for p in self.value_model.parameters():
                p.requires_grad = True
            for p in self.value_model2.parameters():
                p.requires_grad = True

            # update critic
            imag_beliefs = imag_beliefs.detach()
            imag_states = imag_states.detach()

            critic_loss = self._compute_loss_critic(
                imag_beliefs, imag_states, imag_ac_logps=imag_ac_logps)

            self.value_optimizer.zero_grad()
            critic_loss.backward()
            nn.utils.clip_grad_norm_(self.value_model.parameters(),
                                     self.args.grad_clip_norm,
                                     norm_type=2)
            nn.utils.clip_grad_norm_(self.value_model2.parameters(),
                                     self.args.grad_clip_norm,
                                     norm_type=2)
            self.value_optimizer.step()

            loss_info.append([
                observation_loss.item(),
                reward_loss.item(),
                kl_loss.item(),
                pcont_loss.item() if self.args.pcont else 0,
                actor_loss.item(),
                critic_loss.item()
            ])

        # finally, update target value function every #gradient_steps
        with torch.no_grad():
            self.target_value_model.load_state_dict(
                self.value_model.state_dict())
        with torch.no_grad():
            self.target_value_model2.load_state_dict(
                self.value_model2.state_dict())

        return loss_info

    def infer_state(self, observation, action, belief=None, state=None):
        """ Infer belief over current state q(s_t|o≤t,a<t) from the history,
        return updated belief and posterior_state at time t
        returned shape: belief/state [belief/state_dim] (remove the time_dim)
    """
        # observation is obs.to(device), action.shape=[act_dim] (will add time dim inside this fn), belief.shape
        belief, _, _, _, posterior_state, _, _ = self.transition_model(
            state, action.unsqueeze(dim=0), belief,
            self.encoder(observation).unsqueeze(
                dim=0))  # Action and observation need extra time dimension

        belief, posterior_state = belief.squeeze(
            dim=0), posterior_state.squeeze(
                dim=0)  # Remove time dimension from belief/state

        return belief, posterior_state

    def select_action(self, state, deterministic=False):
        # get action with the inputs get from fn: infer_state; return a numpy with shape [batch, act_size]
        belief, posterior_state = state
        action, _ = self.actor_model(belief,
                                     posterior_state,
                                     deterministic=deterministic,
                                     with_logprob=False)
        if not deterministic and not self.args.with_logprob:
            print("e")
            action = Normal(action, self.args.expl_amount).rsample()

            # clip the angle
            action[:, 0].clamp_(min=self.args.angle_min,
                                max=self.args.angle_max)
            # clip the throttle
            if self.args.fix_speed:
                action[:, 1] = self.args.throttle_base
            else:
                action[:, 1].clamp_(min=self.args.throttle_min,
                                    max=self.args.throttle_max)
        print("action", action)
        # return action.cup().numpy()
        return action  # this is a Tonsor.cuda

    def import_parameters(self, params):
        # only import or export the parameters used when local rollout
        self.encoder.load_state_dict(params["encoder"])
        self.actor_model.load_state_dict(params["policy"])
        self.transition_model.load_state_dict(params["transition"])

    def export_parameters(self):
        """ return the model paras used for local rollout """
        params = {
            "encoder": self.encoder.cpu().state_dict(),
            "policy": self.actor_model.cpu().state_dict(),
            "transition": self.transition_model.cpu().state_dict()
        }

        self.encoder.to(self.args.device)
        self.actor_model.to(self.args.device)
        self.transition_model.to(self.args.device)

        return params