コード例 #1
0
                    epoch + 1, p, loss.item()))

        scheduler.step()
        model.eval()

        val_loss, val_acc = test(model, val_loader, device)
        print("__________________________________________")
        print("\nValidation Acc:      ", val_acc)
        print("Validation Loss:     ", val_loss)
        print("\nTraining Loss:     ", current_loss / count)
        print("Learning Rate:       ", scheduler.get_lr()[0])
        print("__________________________________________")

        model.train()

        torch.save(model.state_dict(), models[model_id] + "_state_dict.pt")
        torch.save(model, models[model_id] + "_model.pt")

    # After training
    model.eval()
    test_loader = get_data_loader(train=False,
                                  batch_size=test_size,
                                  split='test',
                                  model=models[model_id])

    _, train_acc = test(model, train_loader, device)
    print("Final Train Accuracy: ", train_acc)

    _, test_acc = test(model, test_loader, device)
    print("Final Accuracy: ", test_acc)
コード例 #2
0
def main():
    """
    This code implements the ADMM based training of a CNN. 
    """

    #model = LeNet5()
    model = VGG(n_class=10)
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

    Path = 'saved_model/pre_train_models/cifar10_vgg_acc_0.943'  # Path to the baseline model
    model.load_state_dict(torch.load(Path))

    model.to(device)

    #data_transforms = transforms.Compose([transforms.CenterCrop(32),transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])
    train_data = datasets.CIFAR10('data/',
                                  train=True,
                                  download=False,
                                  transform=transforms.Compose([
                                      transforms.Pad(4),
                                      transforms.RandomCrop(32),
                                      transforms.RandomHorizontalFlip(),
                                      transforms.ToTensor(),
                                      transforms.Normalize(
                                          (0.4914, 0.4822, 0.4465),
                                          (0.2023, 0.1994, 0.2010))
                                  ]))
    #train_data = datasets.MNIST(root='data/',download=False,train=True,transform=data_transforms)
    """
    N_train = len(train_data)
    val_split = 0.1
    N_val = int(val_split*N_train)

    train_data,val_data = torch.utils.data.random_split(train_data,(N_train-N_val,N_val))
    """

    ## Test data
    test_data = datasets.CIFAR10('data/',
                                 train=False,
                                 download=False,
                                 transform=transforms.Compose([
                                     transforms.Pad(4),
                                     transforms.RandomCrop(32),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize(
                                         (0.4914, 0.4822, 0.4465),
                                         (0.2023, 0.1994, 0.2010))
                                 ]))
    #test_data = datasets.MNIST(root='data/',download=False,train=False,transform=data_transforms)

    batch_size = 128
    num_epochs = 50
    log_step = 100

    loss_fn = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=1e-2)
    #optimizer = torch.optim.SGD(model.parameters(), lr =5e-4,momentum =0.9, weight_decay = 5e-4 )
    scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
                                                     milestones=[15, 30],
                                                     gamma=0.1)

    ####### ADMM Training ##############
    ## Parameters

    fc_prune = False  # True if the fully connected layers are also pruned
    prune_type = 'filter'  # Type of structural pruning at the convolutional layers

    # Number of non zero filters at each convolutional layer
    l = {
        'conv1': 32,
        'conv2': 64,
        'conv3': 128,
        'conv4': 128,
        'conv5': 256,
        'conv6': 256,
        'conv7': 256,
        'conv8': 256
    }

    # ADMM parameters
    rho_val = 1.5e-3
    num_admm_steps = 10

    Z = {}
    U = {}
    rho = {}
    best_accuracy = 0
    all_acc = False

    ## Initialization of the variable Z and dual variable U

    for name_net in model.named_modules():
        name, net = name_net

        if isinstance(net, nn.Conv2d):
            Z[name] = net.weight.clone().detach().requires_grad_(False)
            Z[name] = Projection_structured(Z[name], l[name], prune_type)
            U[name] = torch.zeros_like(net.weight, requires_grad=False)
            rho[name] = rho_val

        elif fc_prune and isinstance(net, nn.Linear):
            Z[name] = net.weight.clone().detach().requires_grad_(False)
            l_unst = int(len(net.weight.data.reshape(-1, )) * prune_ratio)
            Z[name], _ = Projection_unstructured(Z[name], l_unst)
            U[name] = torch.zeros_like(net.weight, requires_grad=False)

    ## ADMM loop

    for i in range(num_admm_steps):
        print('ADMM step number {}'.format(i))
        # First train the VGG model
        train_model_admm(model, train_data, batch_size, loss_fn, optimizer,
                         scheduler, num_epochs, log_step, Z, U, rho, fc_prune,
                         device)

        # Update the variable Z
        for name_net in model.named_modules():
            name, net = name_net
            if isinstance(net, nn.Conv2d):
                Z[name] = Projection_structured(net.weight.detach() + U[name],
                                                l[name], prune_type)

            elif fc_prune and isinstance(net, nn.Linear):
                l_unst = int(len(net.weight.data.reshape(-1, )) * prune_ratio)
                Z[name], _ = Projection_unstructured(
                    net.weight.detach() + U[name], l_unst)

        # Updating the dual variable U
        for name_net in model.named_modules():
            name, net = name_net
            if isinstance(net, nn.Conv2d):
                U[name] = U[name] + net.weight.detach() - Z[name]
            elif fc_prune and isinstance(net, nn.Linear):
                U[name] = U[name] + net.weight.detach() - Z[name]

        ## Check the test accuracy
        model.eval()
        test_accuracy = eval_accuracy_data(test_data, model, batch_size,
                                           device)
        print('Test accuracy is', test_accuracy)
        if test_accuracy > best_accuracy:
            print(
                'Saving model with test accuracy {:.3f}'.format(test_accuracy))
            torch.save(
                model.state_dict(),
                'saved_model/admm_model/cifar10_vgg_acc_{:.3f}'.format(
                    test_accuracy))
            if all_acc:
                print('Removing model with test accuracy {:.3f}'.format(
                    best_accuracy))
                os.remove(
                    'saved_model/admm_model/cifar10_vgg_acc_{:.3f}'.format(
                        best_accuracy))
            best_accuracy = test_accuracy
            all_acc = True