コード例 #1
0
def main():
    t = time()
    check_flags()
    print(get_model_info_as_str())
    data_train = SiameseModelData(FLAGS.dataset_train)
    dist_sim_calculator = DistSimCalculator(
        FLAGS.dataset_train, FLAGS.ds_metric, FLAGS.ds_algo)
    model = create_model(FLAGS.model, data_train.input_dim(),
                         data_train, dist_sim_calculator)
    os.environ["CUDA_VISIBLE_DEVICES"] = str(FLAGS.gpu)
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    saver = Saver(sess)
    sess.run(tf.global_variables_initializer())
    if FLAGS.dataset_val_test == FLAGS.dataset_train:
        data_val_test = data_train
    else:
        # Generalizability test: val test on unseen train and test graphs.
        data_val_test = SiameseModelData(FLAGS.dataset_val_test)
    eval = Eval(data_val_test, dist_sim_calculator)
    try:
        train_costs, train_times, val_results_dict = \
            train_val_loop(data_train, data_val_test, eval, model, saver, sess)
        best_iter, test_results = \
            test(data_val_test, eval, model, saver, sess, val_results_dict)
        overall_time = convert_long_time_to_str(time() - t)
        print(overall_time)
        saver.save_overall_time(overall_time)
    except:
        traceback.print_exc()
    else:
        return train_costs, train_times, val_results_dict, best_iter, test_results
コード例 #2
0
ファイル: main.py プロジェクト: kangzf/GraphEmbedding
def main():
    check_flags()
    data = SiameseModelData()
    dist_calculator = DistCalculator(FLAGS.dataset, FLAGS.dist_metric,
                                     FLAGS.dist_algo)
    model = create_model(FLAGS.model, data.input_dim())
    sess = tf.Session()
    saver = Saver(sess)
    sess.run(tf.global_variables_initializer())
    train_costs, train_times, val_costs, val_times = \
        train_val(data, dist_calculator, model, saver, sess)
    results = \
        test(data, dist_calculator, model, saver, sess)
    return train_costs, train_times, val_costs, val_times, results
コード例 #3
0
def main():
    t = time()
    check_flags()
    print(get_model_info_as_str())
    data = SiameseModelData()
    dist_calculator = DistCalculator(
        FLAGS.dataset, FLAGS.dist_metric, FLAGS.dist_algo)
    model = create_model(FLAGS.model, data.input_dim(), data, dist_calculator)
    os.environ["CUDA_VISIBLE_DEVICES"] = str(FLAGS.gpu)
    config = tf.ConfigProto()
    config.gpu_options.allow_growth=True
    sess = tf.Session(config=config)
    saver = Saver(sess)
    sess.run(tf.global_variables_initializer())
    eval = Eval(data, dist_calculator)
    train_costs, train_times, val_results_dict = \
        train_val_loop(data, eval, model, saver, sess)
    best_iter, test_results = \
        test(data, eval, model, saver, sess, val_results_dict)
    overall_time = convert_long_time_to_str(time() - t)
    print(overall_time)
    saver.save_overall_time(overall_time)
    return train_costs, train_times, val_results_dict, best_iter, test_results
コード例 #4
0
ファイル: run.py プロジェクト: sgar5067/UCSC-Project-Final
def main():
    t = time()
    conf_code = extract_config_code()
    check_flags()
    print(get_model_info_as_str())
    
    data = SiameseModelData(FLAGS.dataset_train)
    dist_sim_calculator = DistSimCalculator(FLAGS.dataset_train, FLAGS.ds_metric, FLAGS.ds_algo)
    model = create_model(FLAGS.model, data.input_dim(), data, dist_sim_calculator)
    os.environ["CUDA_VISIBLE_DEVICES"] = str(FLAGS.gpu)
    config = tf.compat.v1.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.compat.v1.Session(config=config)
    saver = Saver(sess)
    sess.run(tf.compat.v1.global_variables_initializer())
    train_costs, train_times = train_loop(data, model, saver, sess)
    test(data, model, saver, sess)
    saver.save_conf_code(conf_code)
    overall_time = convert_long_time_to_str(time() - t)
    
    print(overall_time, saver.get_log_dir())    
    saver.save_overall_time(overall_time)
    
    return train_costs, train_times