コード例 #1
0
def FeedbackControl(X, Xd, Xd_next, Kp, Ki, delta_t, current_config,
                    error_integral):
    """ This function calculates the kinematic task-space feedforward plus feedback control law
	(written both as Equation (11.16) and (13.37) in the textbook).

	Input:
	  X - The current actual end-effector configuration (Tse).
	  Xd - The current end-effector reference configuration (Tse_d).
	  Xd_next - The end-effector reference configuration at the next timestep in the reference trajectory (Tse_d_next).
	  Kp - the P gain matrix.
	  Ki - the I gain matrix.
	  delta_t - The time step Δt between reference trajectory configurations.
	  current_config - The current cunfiguration.

	Return: 
	  V - The commanded end-effector twist, expressed in the end-effector frame {e}.
	  controls - The commanded wheel and arm joint controls.
	  Xerr - The error.
	  error_integral - The error integral.

	"""

    # Initialize variables:
    l = 0.47 / 2  # The forward-backward distance between the wheels to frame {b} [m]
    w = 0.3 / 2  # The side-to-side distance between the wheels to frame {b} [m]
    r = 0.0475  # The radius of each wheel [m]

    # The fixed offset from the chassis frame {b} to the base frame of the arm {0}:
    Tb0 = np.array([[1, 0, 0, 0.1662], [0, 1, 0, 0], [0, 0, 1, 0.0026],
                    [0, 0, 0, 1]])

    # The end-effector frame {e} relative to the arm base frame {0}, when the arm is at its home configuration:
    M0e = np.array([[1, 0, 0, 0.033], [0, 1, 0, 0], [0, 0, 1, 0.6546],
                    [0, 0, 0, 1]])

    # The screw axes B for the 5 joints expressed in the end-effector frame {e}, when the arm is at its home configuration:
    Blist = np.array([[0, 0, 1, 0, 0.0330, 0], [0, -1, 0, -0.5076, 0, 0],
                      [0, -1, 0, -0.3526, 0, 0], [0, -1, 0, -0.2176, 0, 0],
                      [0, 0, 1, 0, 0, 0]]).T

    # Get current arm joint angles:
    arm_joints = current_config[3:8]

    # Calculate the chasis configuration (according to Chapter 13.4):
    F = r / 4 * np.array(
        [[0, 0, 0, 0], [0, 0, 0, 0],
         [-1 / (l + w), 1 / (l + w), 1 / (l + w), -1 /
          (l + w)], [1, 1, 1, 1], [-1, 1, -1, 1], [0, 0, 0, 0]])

    # The fixed offset from the base frame of the arm {0} to the end-effector frame {e}:
    T0e = core.FKinBody(M0e, Blist, arm_joints)

    # The the transformation between end-effector frame {e} to the chassis frame {b}:
    Teb = (core.TransInv(T0e)).dot(core.TransInv(Tb0))

    # Calculate the feedforward reference twist:
    Vd = core.se3ToVec(
        core.MatrixLog6((core.TransInv(Xd)).dot(Xd_next)) / delta_t)
    print("Vd: ", Vd)

    # Calculate the Adx-1xd matrix:
    ADx1xd = core.Adjoint((core.TransInv(X)).dot(Xd))
    ADx1xdVd = ADx1xd.dot(Vd)
    print("ADx1xdVd: ", ADx1xdVd)

    # Calculate the error:
    Xerr = core.se3ToVec(core.MatrixLog6((core.TransInv(X)).dot(Xd)))
    print("Xerr: ", Xerr)

    # Calculate command end effector twist (when the numerical integral of the error is error_integral + Xerr * delta_t):
    error_integral += Xerr * delta_t
    V = ADx1xdVd + Kp.dot(Xerr) + Ki.dot(error_integral)
    print("V: ", V)

    # Calculate the arm, body and end-effector Jacobian matrices:
    Ja = core.JacobianBody(Blist, arm_joints)
    Jb = (core.Adjoint(Teb)).dot(F)
    Je = np.concatenate((Jb, Ja), axis=1)
    print("Je: ", Je)

    # Calculate the wheel and arm joint controls:
    Je_inv = np.linalg.pinv(Je)
    controls = Je_inv.dot(V)
    print("controls: ", controls)

    return V, controls, Xerr, error_integral
コード例 #2
0
        X_d_next = np.array([[
            th.ref_traj[i + 1][0], th.ref_traj[i + 1][1],
            th.ref_traj[i + 1][2], th.ref_traj[i + 1][9]
        ],
                             [
                                 th.ref_traj[i + 1][3], th.ref_traj[i + 1][4],
                                 th.ref_traj[i + 1][5], th.ref_traj[i + 1][10]
                             ],
                             [
                                 th.ref_traj[i + 1][6], th.ref_traj[i + 1][7],
                                 th.ref_traj[i + 1][8], th.ref_traj[i + 1][11]
                             ], [0, 0, 0, 1]])

        # The error twist Xerr that takes X to Xd in unit time is
        # extracted from the 4x4 se(3) matrix [Xerr] = log(X^(−1) Xd)
        X_err = mr.se3ToVec(mr.MatrixLog6(np.dot(mr.TransInv(X), X_d)))

        # Maintain an estimate of the integral of the error
        integral = integral + (X_err * timestep)

        # Compute the twist which is necessary to go from X_d to X_d_next
        V_d = mr.se3ToVec(
            mr.MatrixLog6(np.dot(mr.TransInv(X_d), X_d_next)) / timestep)

        # Build the contro law
        term1 = np.dot(mr.Adjoint(np.dot(mr.TransInv(X), X_d)), V_d)
        term2 = np.dot(K_p, X_err)
        term3 = np.dot(K_i, integral)
        V = term1 + term2 + term3

        # Compute the Jacobian and, using the pseudoinverse, obtain the control signal
コード例 #3
0
def IKinBodyIterate(Blist, M, T, thetalist0, eomg, ev):
    """Computes inverse kinematics in the body frame for an open chain robot

    :param Blist: The joint screw axes in the end-effector frame when the
                  manipulator is at the home position, in the format of a
                  matrix with axes as the columns
    :param M: The home configuration of the end-effector
    :param T: The desired end-effector configuration Tsd
    :param thetalist0: An initial guess of joint angles that are close to
                       satisfying Tsd
    :param eomg: A small positive tolerance on the end-effector orientation
                 error. The returned joint angles must give an end-effector
                 orientation error less than eomg
    :param ev: A small positive tolerance on the end-effector linear position
               error. The returned joint angles must give an end-effector
               position error less than ev
    :return thetalist: Joint angles that achieve T within the specified
                       tolerances,
    :return success: A logical value where TRUE means that the function found
                     a solution and FALSE means that it ran through the set
                     number of maximum iterations without finding a solution
                     within the tolerances eomg and ev.
    Uses an iterative Newton-Raphson root-finding method.
    The maximum number of iterations before the algorithm is terminated has
    been hardcoded in as a variable called maxiterations. It is set to 20 at
    the start of the function, but can be changed if needed.

    Example Input:
        Blist = np.array([[0, 0, -1, 2, 0,   0],
                          [0, 0,  0, 0, 1,   0],
                          [0, 0,  1, 0, 0, 0.1]]).T
        M = np.array([[-1, 0,  0, 0],
                      [ 0, 1,  0, 6],
                      [ 0, 0, -1, 2],
                      [ 0, 0,  0, 1]])
        T = np.array([[0, 1,  0,     -5],
                      [1, 0,  0,      4],
                      [0, 0, -1, 1.6858],
                      [0, 0,  0,      1]])
        thetalist0 = np.array([1.5, 2.5, 3])
        eomg = 0.01
        ev = 0.001
    Output:
        (np.array([1.57073819, 2.999667, 3.14153913]), True)
    """
    thetalist = np.array(thetalist0).copy()
    i = 0
    maxiterations = 20
    Vb = mr.se3ToVec(mr.MatrixLog6(np.dot(mr.TransInv(mr.FKinBody(M, Blist, \
                                                      thetalist)), T)))
    err = np.linalg.norm([Vb[0], Vb[1], Vb[2]]) > eomg \
          or np.linalg.norm([Vb[3], Vb[4], Vb[5]]) > ev
    while err and i < maxiterations:
        print("Iterations: ", i)
        print("joint vector: ", thetalist)
        with open("iterates.csv", "a", newline="") as file:
            csv.writer(file).writerow([
                thetalist[0], thetalist[1], thetalist[2], thetalist[3],
                thetalist[4], thetalist[5]
            ])
        Tsb = mr.FKinBody(M, Blist, thetalist)
        print("SE(3) end−effector config: ", Tsb)
        print("error twist V_b: ", Vb)
        print("angular error magnitude ∣∣omega_b∣∣: ",
              np.linalg.norm([Vb[0], Vb[1], Vb[2]]))
        print("linear error magnitude ∣∣v_b∣∣: ",
              np.linalg.norm([Vb[3], Vb[4], Vb[5]]))

        thetalist = thetalist \
                    + np.dot(np.linalg.pinv(mr.JacobianBody(Blist, \
                                                         thetalist)), Vb)
        i = i + 1
        Vb \
        = mr.se3ToVec(mr.MatrixLog6(np.dot(mr.TransInv(mr.FKinBody(M, Blist, \
                                                       thetalist)), T)))
        err = np.linalg.norm([Vb[0], Vb[1], Vb[2]]) > eomg \
              or np.linalg.norm([Vb[3], Vb[4], Vb[5]]) > ev
    return (thetalist, not err)