def milestone2_test(): """ Milestone 2 : Test The robot manipulator traectory generation for pick and place task CoppeliaSim : Scene8_gripper_csv """ Tse_initial = [[1, 0, 0, 0.1662], [0, 1, 0, 0], [0, 0, 1, 0.5], [0, 0, 0, 1]] Tsc_initial = [[1, 0, 0, 1], [0, 1, 0, 0], [0, 0, 1, 0.025], [0, 0, 0, 1]] Tsc_goal = [[0, 1, 0, 0], [-1, 0, 0, -1], [0, 0, 1, 0.025], [0, 0, 0, 1]] # Generating stadoff and gripping transforms theta = [0, 3 * math.pi / 4, 0] R_so3 = mr.VecToso3(theta) R = mr.MatrixExp3(R_so3) position = [-0.01, 0, 0.20] Tce_standoff = mr.RpToTrans(R, position) position = [-0.01, 0, 0.01] Tce_gripping = mr.RpToTrans(R, position) trajectory = trajectory_planner.TrajectoryGenerator( Tse_initial, Tsc_initial, Tsc_goal, Tce_gripping, Tce_standoff, 0.01, 10) csv_writer.writeDataList(trajectory, 'milestone2_test')
def p11(): print('P11') so3mat = np.array([[0, .5, -1], [-.5, 0, 2], [1, -2, 0]]) result = mr.MatrixExp3(so3mat) print(result)
def TAAtoTM(transaa): transaa = np.vstack((transaa[0], transaa[1], transaa[2], transaa[3], transaa[4], transaa[5])) s = transaa.shape[1] if s == 6: transaa = (transaa).conj().transpose() # mres = (mr.MatrixExp3(mr.VecToso3(transaa[3:6]))) tm = np.vstack((np.hstack((mres, transaa[0:3])), np.array([0, 0, 0, 1]))) return tm
def youBot_Tbase(theta, x, y): """Computes the transform of youBot base given a base configuration :param configuration: A 3-vector representing the current configuration of the robot base. 3 variables for the chassis configuration (theta, x, y), :return: Transform of robot base in space frame """ rotation = [0, 0, theta] position = [x, y, 0.0963] R_so3 = mr.VecToso3(rotation) R = mr.MatrixExp3(R_so3) Tbase = mr.RpToTrans(R, position) return Tbase
def TrajectoryGenerator(Xstart, Xend, Tf, N, gripper_state, write): """Computes a trajectory as a list of N SE(3) matrices corresponding to the straight line motion. :param Xstart: The initial end-effector configuration :param Xend: The final end-effector configuration :param Tf: Total time of the motion in seconds from rest to rest :param N: The number of points N > 1 (Start and stop) in the discrete representation of the trajectory :param gripper_state: 0- open, 1-close :write: a csv_write object :return: The discretized trajectory as a list of N matrices in SE(3) separated in time by Tf/(N-1). The first in the list is Xstart and the Nth is Xend. R is the rotation matrix in X, and p is the linear position part of X. 13-array: [9 R variables (from first row to last row), 3 P variables (from x to z), gripper_state ] Example Input: Xstart = np.array([[1, 0, 0, 1], [0, 1, 0, 0], [0, 0, 1, 1], [0, 0, 0, 1]]) Xend = np.array([[0, 0, 1, 0.1], [1, 0, 0, 0], [0, 1, 0, 4.1], [0, 0, 0, 1]]) Tf = 5 N = 4 gripper_state = 0 write = csv.writer(csv_file,delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) Output: [1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.1992,0.0,0.7535,0.0] """ N = int(N) timegap = Tf / (N - 1.0) traj = [[None]] * N for i in range(N): s = mr.QuinticTimeScaling(Tf, timegap * i) Rstart, pstart = mr.TransToRp(Xstart) Rend, pend = mr.TransToRp(Xend) traj[i] = np.r_[np.c_[np.dot(Rstart, \ mr.MatrixExp3(mr.MatrixLog3(np.dot(np.array(Rstart).T,Rend)) * s)), \ s * np.array(pend) + (1 - s) * np.array(pstart)], \ [[0, 0, 0, 1]]] # traj[i] = np.dot(Xstart, mr.MatrixExp6(mr.MatrixLog6(np.dot(mr.TransInv(Xstart), Xend)) * s)) output = traj[i][:-1, :-1].flatten() output = np.append(output, traj[i][:, -1][:-1].flatten()) output = np.append(output, gripper_state) write.writerow(output)
def poseToTransform(pose): """Converts a 3D pose (Wx, Wy, Wz, x, y, z) to a homogeneous transformation matrix :param pose: 2D pose [Wx, Wy, Wz, x, y, z] Wx, Wy, Wz : Rotation angles x, y, z : Position :return: Homogeneous Transformation matrix corresponding to given pose """ [Wx, Wy, Wz, x, y, z] = pose rotation = [Wx, Wy, Wz] position = [x, y, z] R_so3 = mr.VecToso3(rotation) R = mr.MatrixExp3(R_so3) T = mr.RpToTrans(R, position) return T
def youBot_Tse(configuration): """Computes the transform of youBot End effector given a robot configuration :param configuration: A 12-vector representing the current configuration of the robot. 3 variables for the chassis configuration (theta, x, y), 5 variables for the arm configuration (J1, J2, J3, J4, J5), and 4 variables for the wheel angles (W1, W2, W3, W4) :return: Transform of End effector in space frame """ theta, x, y = configuration[0:3] rotation = [0, 0, theta] position = [x, y, 0.0963] R_so3 = mr.VecToso3(rotation) R = mr.MatrixExp3(R_so3) Tsb = mr.RpToTrans(R, position) Tbe = youBot_Tbe(configuration[3:8]) Tse = np.dot(Tsb, Tbe) return Tse
def p2p_cart_cubic_decoupled(robot, T_end, ts): T_start = robot.get_homogeneous() pos_start = T_start[0:3, 3] pos_end = T_end[0:3, 3] rot_start = T_start[0:3, 0:3] rot_end = T_end[0:3, 0:3] a2 = 3 / (ts**2) a3 = -2 / (ts**3) t = 0 while t < ts: t += robot.dt s = a2 * t**2 + a3 * t**3 pos = pos_start + (pos_end - pos_start) * s mat_rot = rot_start @ mr.MatrixExp3( mr.MatrixLog3(rot_start.T @ rot_end) * s) eul = rot2eul(mat_rot) quat = p.getQuaternionFromEuler(eul) joints = p.calculateInverseKinematics( robot.robot_id, endEffectorLinkIndex=robot.eef_link_idx, targetPosition=pos, targetOrientation=quat) yield joints
term3 = np.dot(term3_a, term3_b) R = term1 + term2 + term3 print('R =') print(R) print('\n') # Question 10 print('Question 10: Create skew symmetric matrix using vector w.\n') # np.array([1, 2, 3]) w = np.array([[1], [2], [0.5]]) w_skew = mr.VecToso3(w) print('w_skew = ') print(w_skew) print('\n') # Question 11 print('Question 11: Calculate rotation matrix using matrix exponential\n') w_hat_theta = np.array([[0, 0.5, -1], [-0.5, 0, 2], [1, -2, 0]]) R = mr.MatrixExp3(w_hat_theta) print('R =') print(R) print('\n') # Question 12 print('Question 12: Calculate matrix logarithm given matrix exponential\n') R = np.array([[0, 0, 1], [-1, 0, 0], [0, -1, 0]]) w_hat_theta = mr.MatrixLog3(R) print('w_hat_theta = ') print(w_hat_theta) print('\n')
V6 = np.array([0, 0, V[0], V[1], V[2], 0]) se3mat = mr.VecTose3(V6) T = mr.MatrixExp6(se3mat) R, p = mr.TransToRp(T) so3mat = mr.MatrixLog3(R) omega = mr.so3ToVec(so3mat) # print p # print omega #Q06 F = np.array([[0, 0], [0, 0], [-0.25, 0.25], [0.25, 0.25], [0, 0], [0, 0]]) # Finding Tbe omega = np.array([0, 0, math.pi / 2]) p = np.array([2, 3, 0]) so3mat = mr.VecToso3(omega) R = mr.MatrixExp3(so3mat) Tbe = mr.RpToTrans(R, p) Teb = np.linalg.inv(Tbe) Ad_Teb = mr.Adjoint(Teb) Jbase = np.dot(Ad_Teb, F) print Tbe print Jbase # #Q07 Jb = [0, 0, 1, -3, 0, 0] Jx = [0, 0, 1, 0, -2, 0] # print np.dot(Ad_Teb, Jx) # [0,-1,0,2;1,0,0,3;0,0,1,0;0,0,0,1] # 0, 1, 0, -3, # -1, 0, 0, 2
def p9(): print('P9') omega = np.array([1, 2, 0]) so3mat = mr.VecToso3(omega) result = mr.MatrixExp3(so3mat) print(result)
Tse_refInitial = [[0, 0, 1, 0], [0, 1, 0, 0], [-1, 0, 0, 0.5], [0, 0, 0, 1]] gains = input("Enter Feedback Controller gains [kp, ki] : ") # Program constants timeStep = 0.01 velocityLimits = [10, 10, 10, 20, 20, 20, 20, 20, 10, 10, 10, 10] K = 10 result_configuration = [] result_Xerr = [] # Generating stadoff and gripping transforms theta = [0, 3 * math.pi/4, 0] R_so3 = mr.VecToso3(theta) R = mr.MatrixExp3(R_so3) position = [0.00, 0, 0.20] #[-0.01, 0, 0.20] Tce_standoff = mr.RpToTrans(R, position) position = [0.00, 0, 0.00] #[-0.01, 0, 0.00] Tce_gripping = mr.RpToTrans(R, position) # Displaying initial End Effector configuration error initialRef = kinematic_model.transformToPose(Tse_refInitial) initialConf = kinematic_model.transformToPose(Tse_initial) initialError = initialRef - initialConf print 'Initial End Effector configuration Error (Theta_x, Theta_y, Theta_z, x, y, z):\n', np.around(initialError, 3) ## Trajectory generation print 'Generating trajectory'
print("Ex7, wa:") wa = Rsa * ws print(wa) # [1,3,2] print("Ex8, theta:") MatLogRsa = mr.MatrixLog3(Rsa) vec = mr.so3ToVec(MatLogRsa) theta = mr.AxisAng3(vec)[-1] print(theta) # 2.094395102393196 print("Ex9, Matrix exponential:") skew = mr.VecToso3(wtheta) MatExp = mr.MatrixExp3(skew) print(MatExp) # [[-0.2938183,0.64690915,0.70368982],[0.64690915,0.67654542,-0.35184491],[-0.70368982,0.35184491,-0.61727288]] print("Ex10, skew.symmetric matrix:") skewMat = mr.VecToso3(wskew) print(skewMat) # [[0,-0.5,2],[0.5,0,-1],[-2,1,0]] print("Ex11, Rotation matrix:") RotMat = mr.MatrixExp3(so3) print(RotMat) # [[0.60482045,0.796274,-0.01182979],[0.46830057,-0.34361048,0.81401868],[0.64411707,-0.49787504,-0.58071821]] print("Ex12, Matrix logarithm") MatLogR12 = mr.MatrixLog3(R12)
def TrajectoryGenerator(Xstart, Tsci, Tscf, Tceg, Tces, k): """ Generates end-effector trajectory between 9 points (8 transitions) and adds them to a csv file The trajectory from the first to second standoff position is a screw instead of a Cartesian. Xstart: initial configuration of end-effector in reference trajectory (Tsei) Tsci: cube's initial configuration Tscf: cube's final configuration Tceg: end-effector position relative to cube when grasping Tces: end-effector position above the cube before and after grasping k: number of reference trajectory configurations per centisecond """ Tf = 3 method = 5 Xend = np.matmul(Tsci, Tces) #first standoff FSL = np.matmul(Tsci, Tceg) #first standoff lowered SS = np.matmul(Tscf, Tces) #second standoff SSL = np.matmul(Tscf, Tceg) #second standoff lowered Xtheend = np.matmul(Tscf, Tces) N = Tf * 100 * k N = int(N) timegap = Tf / (N - 1.0) traj = [[None]] * N Rstart, pstart = mr.TransToRp(Xstart) Rend, pend = mr.TransToRp(Xend) for i in range(N): if method == 3: s = mr.CubicTimeScaling(Tf, timegap * i) else: s = mr.QuinticTimeScaling(Tf, timegap * i) traj[i] \ = np.r_[np.c_[np.dot(Rstart, \ mr.MatrixExp3(mr.MatrixLog3(np.dot(np.array(Rstart).T,Rend)) * s)), \ s * np.array(pend) + (1 - s) * np.array(pstart)], \ [[0, 0, 0, 1]]] row = [] for p in range(len(traj[i]) - 1): for l in range(0, 3): row.append(traj[i][p][l]) for m in range(len(traj[i]) - 1): for n in range(0, 4): if n == 3: row.append(traj[i][m][n]) row.append(0) with open('penultimate.csv', 'a') as csvFile: writer = csv.writer(csvFile) writer.writerow(row) csvFile.close() N = int(N) timegap = Tf / (N - 1.0) traj = [[None]] * N RstartFSL, pstartFSL = mr.TransToRp(Xend) RendFSL, pendFSL = mr.TransToRp(FSL) for i in range(N): if method == 3: s = mr.CubicTimeScaling(Tf, timegap * i) else: s = mr.QuinticTimeScaling(Tf, timegap * i) traj[i] \ = np.r_[np.c_[np.dot(RstartFSL, \ mr.MatrixExp3(mr.MatrixLog3(np.dot(np.array(RstartFSL).T,RendFSL)) * s)), \ s * np.array(pendFSL) + (1 - s) * np.array(pstartFSL)], \ [[0, 0, 0, 1]]] row = [] for q in range(len(traj[i]) - 1): for r in range(0, 3): row.append(traj[i][q][r]) for s in range(len(traj[i]) - 1): for t in range(0, 4): if t == 3: row.append(traj[i][s][t]) row.append(0) with open('penultimate.csv', 'a') as csvFile: writer = csv.writer(csvFile) writer.writerow(row) csvFile.close() N = int(N) timegap = Tf / (N - 1.0) traj = [[None]] * N RstartFC, pstartFC = mr.TransToRp(FSL) #FC = FIRST CLOSE RendFC, pendFC = mr.TransToRp(FSL) for i in range(N): if method == 3: s = mr.CubicTimeScaling(Tf, timegap * i) else: s = mr.QuinticTimeScaling(Tf, timegap * i) traj[i] \ = np.r_[np.c_[np.dot(RstartFC, \ mr.MatrixExp3(mr.MatrixLog3(np.dot(np.array(RstartFC).T,RendFC)) * s)), \ s * np.array(pendFC) + (1 - s) * np.array(pstartFC)], \ [[0, 0, 0, 1]]] row = [] for u in range(len(traj[i]) - 1): for v in range(0, 3): row.append(traj[i][u][v]) for w in range(len(traj[i]) - 1): for x in range(0, 4): if x == 3: row.append(traj[i][w][x]) row.append(1) with open('penultimate.csv', 'a') as csvFile: writer = csv.writer(csvFile) writer.writerow(row) csvFile.close() N = int(N) timegap = Tf / (N - 1.0) traj = [[None]] * N RstartFrise, pstartFrise = mr.TransToRp(FSL) #Frise = first rise RendFrise, pendFrise = mr.TransToRp(Xend) for i in range(N): if method == 3: s = mr.CubicTimeScaling(Tf, timegap * i) else: s = mr.QuinticTimeScaling(Tf, timegap * i) traj[i] \ = np.r_[np.c_[np.dot(RstartFrise, \ mr.MatrixExp3(mr.MatrixLog3(np.dot(np.array(RstartFrise).T,RendFrise)) * s)), \ s * np.array(pendFrise) + (1 - s) * np.array(pstartFrise)], \ [[0, 0, 0, 1]]] row = [] for y in range(len(traj[i]) - 1): for z in range(0, 3): row.append(traj[i][y][z]) for aa in range(len(traj[i]) - 1): for ab in range(0, 4): if ab == 3: row.append(traj[i][aa][ab]) row.append(1) with open('penultimate.csv', 'a') as csvFile: writer = csv.writer(csvFile) writer.writerow(row) csvFile.close() """ N = int(N) timegap = Tf / (N - 1.0) traj = [[None]] * N RstartSS, pstartSS = mr.TransToRp(Xend) #Frise = first rise RendSS, pendSS = mr.TransToRp(SS) for i in range(N): if method == 3: s = mr.CubicTimeScaling(Tf, timegap * i) else: s = mr.QuinticTimeScaling(Tf, timegap * i) traj[i] \ = np.r_[np.c_[np.dot(RstartSS, \ mr.MatrixExp3(mr.MatrixLog3(np.dot(np.array(RstartSS).T,RendSS)) * s)), \ s * np.array(pendSS) + (1 - s) * np.array(pstartSS)], \ [[0, 0, 0, 1]]] """ N = int(N) timegap = Tf / (N - 1.0) traj = [[None]] * N for i in range(N): if method == 3: s = mr.CubicTimeScaling(Tf, timegap * i) else: s = mr.QuinticTimeScaling(Tf, timegap * i) traj[i] \ = np.dot(Xend, mr.MatrixExp6(mr.MatrixLog6(np.dot(mr.TransInv(Xend), \ SS)) * s)) row = [] for ac in range(len(traj[i]) - 1): for ad in range(0, 3): row.append(traj[i][ac][ad]) for ae in range(len(traj[i]) - 1): for af in range(0, 4): if af == 3: row.append(traj[i][ae][af]) row.append(1) with open('penultimate.csv', 'a') as csvFile: writer = csv.writer(csvFile) writer.writerow(row) csvFile.close() N = int(N) timegap = Tf / (N - 1.0) traj = [[None]] * N RstartSSL, pstartSSL = mr.TransToRp(SS) #Frise = first rise RendSSL, pendSSL = mr.TransToRp(SSL) for i in range(N): if method == 3: s = mr.CubicTimeScaling(Tf, timegap * i) else: s = mr.QuinticTimeScaling(Tf, timegap * i) traj[i] \ = np.r_[np.c_[np.dot(RstartSSL, \ mr.MatrixExp3(mr.MatrixLog3(np.dot(np.array(RstartSSL).T,RendSSL)) * s)), \ s * np.array(pendSSL) + (1 - s) * np.array(pstartSSL)], \ [[0, 0, 0, 1]]] row = [] for ag in range(len(traj[i]) - 1): for ah in range(0, 3): row.append(traj[i][ag][ah]) for ai in range(len(traj[i]) - 1): for aj in range(0, 4): if aj == 3: row.append(traj[i][ai][aj]) row.append(1) with open('penultimate.csv', 'a') as csvFile: writer = csv.writer(csvFile) writer.writerow(row) csvFile.close() N = int(N) timegap = Tf / (N - 1.0) traj = [[None]] * N RstartSSU, pstartSSU = mr.TransToRp(SSL) #Frise = first rise RendSSU, pendSSU = mr.TransToRp(SSL) for i in range(N): if method == 3: s = mr.CubicTimeScaling(Tf, timegap * i) else: s = mr.QuinticTimeScaling(Tf, timegap * i) traj[i] \ = np.r_[np.c_[np.dot(RstartSSU, \ mr.MatrixExp3(mr.MatrixLog3(np.dot(np.array(RstartSSU).T,RendSSU)) * s)), \ s * np.array(pendSSU) + (1 - s) * np.array(pstartSSU)], \ [[0, 0, 0, 1]]] row = [] for ak in range(len(traj[i]) - 1): for al in range(0, 3): row.append(traj[i][ak][al]) for am in range(len(traj[i]) - 1): for an in range(0, 4): if an == 3: row.append(traj[i][am][an]) row.append(0) with open('penultimate.csv', 'a') as csvFile: writer = csv.writer(csvFile) writer.writerow(row) csvFile.close() N = int(N) timegap = Tf / (N - 1.0) traj = [[None]] * N RstartSSD, pstartSSD = mr.TransToRp(SSL) #Frise = first rise RendSSD, pendSSD = mr.TransToRp(Xtheend) for i in range(N): if method == 3: s = mr.CubicTimeScaling(Tf, timegap * i) else: s = mr.QuinticTimeScaling(Tf, timegap * i) traj[i] \ = np.r_[np.c_[np.dot(RstartSSD, \ mr.MatrixExp3(mr.MatrixLog3(np.dot(np.array(RstartSSD).T,RendSSD)) * s)), \ s * np.array(pendSSD) + (1 - s) * np.array(pstartSSD)], \ [[0, 0, 0, 1]]] row = [] for ao in range(len(traj[i]) - 1): for ap in range(0, 3): row.append(traj[i][ao][ap]) for aq in range(len(traj[i]) - 1): for ar in range(0, 4): if ar == 3: row.append(traj[i][aq][ar]) row.append(0) with open('penultimate.csv', 'a') as csvFile: writer = csv.writer(csvFile) writer.writerow(row) csvFile.close() return traj #maybe no return statement needed
def milestone3_test4(): """ Milestone 3 : Test4 Check robot controller for generated tragectory (kp = 0, ki = 0) """ configuration = [ 0.0, 0.0, 0.0, 0.0, -0.35, -0.698, -0.505, 0.0, 0.0, 0.0, 0.0, 0.0 ] Tsc_initial = [[1, 0, 0, 1], [0, 1, 0, 0], [0, 0, 1, 0.025], [0, 0, 0, 1]] Tsc_goal = [[0, 1, 0, 0], [-1, 0, 0, -1], [0, 0, 1, 0.025], [0, 0, 0, 1]] # Tsc_goal = [[1, 0, 0, 0.5], [0, 1, 0, 0], [0, 0, 1, 0.025], [0, 0, 0, 1]] Tse_initial = kinematic_model.youBot_Tse(configuration) result_configuration = [] result_Xerr = [] gains = [0, 0] # kp, ki timeStep = 0.01 velocityLimits = [10, 10, 10, 20, 20, 20, 20, 20, 10, 10, 10, 10] K = 1 # Generating stadoff and gripping transforms theta = [0, 3 * math.pi / 4, 0] R_so3 = mr.VecToso3(theta) R = mr.MatrixExp3(R_so3) position = [-0.01, 0, 0.20] Tce_standoff = mr.RpToTrans(R, position) position = [-0.005, 0, 0.005] Tce_gripping = mr.RpToTrans(R, position) # Trajectory generation print 'Generating trajectory' trajectory = trajectory_planner.TrajectoryGenerator( Tse_initial, Tsc_initial, Tsc_goal, Tce_gripping, Tce_standoff, timeStep, K) print 'Trajectory generation successfull' # Control generation for x in range(len(trajectory) - 1): Xd = kinematic_model.configurationToTransform(trajectory[x]) Xd_next = kinematic_model.configurationToTransform(trajectory[x + 1]) Tse = kinematic_model.youBot_Tse(configuration) V, Xerr = controller.FeedbackControl(Tse, Xd, Xd_next, gains, timeStep) # Calculate Je Je = kinematic_model.youBot_Je(configuration) while True: # Calculating control cmd = np.dot(np.linalg.pinv(Je), V) # Control : omega (5 variables), wheel speeds u (4 variables) control = np.concatenate((cmd[4:9], cmd[0:4])) next_config = kinematic_simulator.NextState( configuration, control, timeStep, velocityLimits) # Joint limit checking # status, jointVector = kinematic_model.youBot_testJointLimits(next_config[3:8]) # status = True # TODO status = kinematic_model.youBot_selfCollisionCheck( next_config[3:8]) jointVector = [0, 0, 0, 0, 0] if status: configuration = next_config break else: Je[:, 4:9] = Je[:, 4:9] * jointVector # Save configuration (Tse) and Xerr per every K iterations if (x % K) == 0: # Append with gripper state gripper_state = trajectory[x][12] youBot_configuration = np.concatenate( (configuration, [gripper_state])) result_configuration.append(youBot_configuration) result_Xerr.append(Xerr) completion = round(((x + 1) * 100.0 / len(trajectory)), 2) sys.stdout.write("\033[F") print('Generating youBot trajectory controls. Progress ' + str(completion) + '%\r') print "Final Error (Xerr) : \n", np.around(Xerr, 5) configComments = [ "A 12-vector representing the current configuration of the robot", "\t3 variables for the chassis configuration (theta, x, y)", "\t5 variables for the arm configuration (J1, J2, J3, J4, J5)", "\tand 4 variables for the wheel angles (W1, W2, W3, W4)" ] csv_writer.writeDataList(result_configuration, name="milestone3_configurations", comments=configComments) XerrComments = [ "A 6-vector representing the error twist", "\t3 variables for the angular velocity error (Wx, Wy, Wz)", "\t3 variables for the linear velocity error (Vx, Vy, Vz)" ] csv_writer.writeDataList(result_Xerr, name="milestone3_Xerr", comments=XerrComments) # Displaying Error Plots labels = ['Wx', 'Wy', 'Wz', 'Vx', 'Vy', 'Vz'] for x in range(6): plt.plot(np.array(result_Xerr)[:, x], label=labels[x]) plt.ylabel('Xerr') plt.legend() plt.show()
def milestone3_test4_debug(): """ Milestone 3 : Test4 Check robot controller for generated tragectory (kp = 0, ki = 0) """ # configuration = [0, 0, 0, 0, -0.35, -0.698, -0.505, 0, 0, 0, 0, 0] configuration = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] Tsc_initial = [[1, 0, 0, 1], [0, 1, 0, 0], [0, 0, 1, 0.025], [0, 0, 0, 1]] Tsc_goal = [[0, 1, 0, 0], [-1, 0, 0, -1], [0, 0, 1, 0.025], [0, 0, 0, 1]] Tse_initial = kinematic_model.youBot_Tse(configuration) result_configuration = [] result_Xerr = [] gains = [0, 0] # kp, ki timeStep = 0.5 K = 1 # Generating stadoff and gripping transforms theta = [0, 3 * math.pi / 4, 0] R_so3 = mr.VecToso3(theta) R = mr.MatrixExp3(R_so3) position = [-0.01, 0, 0.20] Tce_standoff = mr.RpToTrans(R, position) position = [-0.01, 0, 0.01] Tce_gripping = mr.RpToTrans(R, position) # Trajectory generation # trajectory = trajectory_planner.TrajectoryGenerator(Tse_initial, Tsc_initial, Tsc_goal, Tce_gripping, Tce_standoff, timeStep, K ) Xstart = kinematic_model.youBot_Tse(configuration) XendConfig = [0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] Xend = kinematic_model.youBot_Tse(XendConfig) trajectory = mr.ScrewTrajectory(Xstart, Xend, 3, 6, 3) csv_writer.writeDataList(trajectory, "milestone3_trajectory") # Control generation for x in range(len(trajectory) - 1): Xd = trajectory[x] Xd_next = trajectory[x + 1] # Xd = kinematic_model.configurationToTransform(trajectory[x]) # Xd_next = kinematic_model.configurationToTransform(trajectory[x+1]) Tse = kinematic_model.youBot_Tse(configuration) print "####### Iteration #######" print "Tse" print np.around(Tse, 3).tolist() print "Xd" print np.around(Xd, 3).tolist() print "Xd_next" print np.around(Xd_next, 3).tolist() V, Xerr = controller.FeedbackControl(Tse, Xd, Xd_next, gains, timeStep) print "V" print np.around(V, 3).tolist() print "Xerr" print np.around(Xerr, 3).tolist() # Calculate Je Je = kinematic_model.youBot_Je(configuration) while True: # Calculating control cmd = np.dot(np.linalg.pinv(Je), V) # Control : omega (5 variables), wheel speeds u (4 variables) control = np.concatenate((cmd[4:9], cmd[0:4])) print "control" print np.around(control, 3).tolist() next_config = kinematic_simulator.NextState( configuration, control, timeStep) print "next_config" print np.around(next_config, 3).tolist() # Joint limit checking status, jointVector = kinematic_model.youBot_testJointLimits( next_config[3:8]) if status: configuration = next_config break else: Je[:, 4:9] = Je[:, 4:9] * jointVector # Save configuration (Tse) and Xerr per every K iterations if (x % K) == 0: result_configuration.append(configuration) result_Xerr.append(Xerr) # print np.around(configuration, 3).tolist() csv_writer.writeDataList(result_configuration, "milestone3_configurations")