コード例 #1
0
     in_features = tg_model.fc.in_features
     out_features = tg_model.fc.out_features
     print("in_features:", in_features, "out_features:",
           out_features)
     ref_model = None
 elif b == first_batch_number + 1:
     ############################################################
     last_iter = b
     ############################################################
     #increment classes
     ref_model = copy.deepcopy(tg_model)
     in_features = tg_model.fc.in_features
     out_features = tg_model.fc.out_features
     print("in_features:", in_features, "out_features:",
           out_features)
     new_fc = modified_linear.SplitCosineLinear(
         in_features, out_features, P)
     new_fc.fc1.weight.data = tg_model.fc.weight.data
     new_fc.sigma.data = tg_model.fc.sigma.data
     tg_model.fc = new_fc
     lamda_mult = out_features * 1.0 / P
 else:
     ############################################################
     last_iter = b
     ############################################################
     ref_model = copy.deepcopy(tg_model)
     in_features = tg_model.fc.in_features
     out_features1 = tg_model.fc.fc1.out_features
     out_features2 = tg_model.fc.fc2.out_features
     print("in_features:", in_features, "out_features1:", \
         out_features1, "out_features2:", out_features2)
     new_fc = modified_linear.SplitCosineLinear(
コード例 #2
0
     tg_model = modified_resnet.resnet18(num_classes=args.nb_cl_fg)
     in_features = tg_model.fc.in_features
     out_features = tg_model.fc.out_features
     print("in_features:", in_features, "out_features:", out_features)
     ref_model = None
 elif iteration == start_iter + 1:
     ############################################################
     last_iter = iteration
     ############################################################
     #increment classes
     ref_model = copy.deepcopy(tg_model)
     in_features = tg_model.fc.in_features
     out_features = tg_model.fc.out_features
     print("in_features:", in_features, "out_features:", out_features)
     new_fc = modified_linear.SplitCosineLinear(in_features,
                                                out_features,
                                                args.nb_cl)
     new_fc.fc1.weight.data = tg_model.fc.weight.data
     new_fc.sigma.data = tg_model.fc.sigma.data
     tg_model.fc = new_fc
     lamda_mult = out_features * 1.0 / args.nb_cl
 else:
     ############################################################
     last_iter = iteration
     ############################################################
     ref_model = copy.deepcopy(tg_model)
     in_features = tg_model.fc.in_features
     out_features1 = tg_model.fc.fc1.out_features
     out_features2 = tg_model.fc.fc2.out_features
     print("in_features:", in_features, "out_features1:", \
         out_features1, "out_features2:", out_features2)