def test_agg_apply_axis_names(axis, func, op): eval_general( *create_test_dfs(test_data["int_data"]), lambda df: getattr(df, op)(func, axis), )
def test_min_max_mean(data, axis, skipna, numeric_only, is_transposed, method): eval_general( *create_test_dfs(data), lambda df: getattr((df.T if is_transposed else df), method) (axis=axis, skipna=skipna, numeric_only=numeric_only), )
def test_all_any(data, axis, skipna, is_transposed, method): eval_general( *create_test_dfs(data), lambda df: getattr((df.T if is_transposed else df), method) (axis=axis, skipna=skipna, bool_only=None), )
def test_describe(data, percentiles): eval_general( *create_test_dfs(data), lambda df: df.describe(percentiles=percentiles), )
def test_idxmin_idxmax(data, axis, skipna, is_transposed, method): eval_general( *create_test_dfs(data), lambda df: getattr((df.T if is_transposed else df), method) (axis=axis, skipna=skipna), )
def test_diff(axis, periods): eval_general( *create_test_dfs(test_data["float_nan_data"]), lambda df: df.diff(axis=axis, periods=periods), )
def test_count(data, axis): eval_general( *create_test_dfs(data), lambda df: df.count(axis=axis), )
def test_reduction_specific(fn, numeric_only): eval_general( *create_test_dfs(test_data_diff_dtype), lambda df: getattr(df, fn)(numeric_only=numeric_only), )
def test_median_skew_transposed(axis, method): eval_general( *create_test_dfs(test_data["int_data"]), lambda df: getattr(df.T, method)(axis=axis), )
def test_to_string(data): eval_general( *create_test_dfs(data), lambda df: df.to_string(), )
def test_sum_prod_specific(fn, min_count, numeric_only): eval_general( *create_test_dfs(test_data_diff_dtype), lambda df: getattr(df, fn) (min_count=min_count, numeric_only=numeric_only), )
def test_to_records(request, data): eval_general( *create_test_dfs(data), lambda df: df.dropna().to_records(), )
def test_dropna_subset_error(data, axis, subset): eval_general(*create_test_dfs(data), lambda df: df.dropna(axis=axis, subset=subset))
def test___hash__(): data = test_data_values[0] pandas_df = pandas.DataFrame(data) modin_df = pd.DataFrame(data) eval_general(modin_df, pandas_df, lambda df: hash(df))
def test_std_var_transposed(axis, ddof, method): eval_general( *create_test_dfs(test_data["int_data"]), lambda df: getattr(df.T, method)(axis=axis, ddof=ddof), )
def test_median_skew_std_var_rank_sem_specific(numeric_only, method): eval_general( *create_test_dfs(test_data_diff_dtype), lambda df: getattr(df, method)(numeric_only=numeric_only), )
def test_cummin_cummax_int_and_float(axis, method): data = {"col1": list(range(1000)), "col2": [i * 0.1 for i in range(1000)]} eval_general(*create_test_dfs(data), lambda df: getattr(df, method) (axis=axis))
def test_cumprod_cummin_cummax_cumsum(axis, skipna, method): eval_general( *create_test_dfs(test_data["float_nan_data"]), lambda df: getattr(df, method)(axis=axis, skipna=skipna), )
def test_diff_transposed(axis): eval_general( *create_test_dfs(test_data["int_data"]), lambda df: df.T.diff(axis=axis), )
def test_rank_transposed(axis, na_option): eval_general( *create_test_dfs(test_data["int_data"]), lambda df: df.rank(axis=axis, na_option=na_option), )
def test_count_specific(numeric_only): eval_general( *create_test_dfs(test_data_diff_dtype), lambda df: df.count(numeric_only=numeric_only), )
def test_cumprod_cummin_cummax_cumsum_transposed(axis, method): eval_general( *create_test_dfs(test_data["int_data"]), lambda df: getattr(df.T, method)(axis=axis), )
def test_describe_specific(exclude, include): eval_general( *create_test_dfs(test_data_diff_dtype), lambda df: df.drop("str_col", axis=1).describe(exclude=exclude, include=include), )
def test_sem_float_nan_only(skipna, ddof): eval_general( *create_test_dfs(test_data["float_nan_data"]), lambda df: df.sem(skipna=skipna, ddof=ddof), )
def test_memory_usage(data, index): eval_general(*create_test_dfs(data), lambda df: df.memory_usage(index=index))
def test_sem_int_only(axis, ddof): eval_general( *create_test_dfs(test_data["int_data"]), lambda df: df.sem(axis=axis, ddof=ddof), )
def test_sum_specific(min_count, numeric_only): eval_general( *create_test_dfs(test_data_diff_dtype), lambda df: df.sum(min_count=min_count, numeric_only=numeric_only), )
def test_std_var_rank(axis, skipna, method): eval_general( *create_test_dfs(test_data["float_nan_data"]), lambda df: getattr(df, method)(axis=axis, skipna=skipna), )
def test_all_any_specific(bool_only, method): eval_general( *create_test_dfs(test_data_diff_dtype), lambda df: getattr(df, method)(bool_only=bool_only), )
def test_agg_apply(axis, func, op): eval_general( *create_test_dfs(test_data["float_nan_data"]), lambda df: getattr(df, op)(func, axis), )