def test_nuclear_norm(self): """Test nuclear_norm.""" npt.assert_almost_equal( matrix.nuclear_norm(self.data1), 15.49193338482967, err_msg='Incorrect nuclear norm', )
def _cost_method(self, *args, **kwargs): """Calculate low-rank component of the cost. This method returns the nuclear norm error of the deconvolved data in matrix form. Parameters ---------- args : interable Positional arguments kwargs : dict Keyword arguments Returns ------- float Low-rank cost component """ cost_val = self.thresh * nuclear_norm(cube2matrix(args[0])) if 'verbose' in kwargs and kwargs['verbose']: print(' - NUCLEAR NORM (X):', cost_val) return cost_val
def _cost_method(self, *args, **kwargs): """Calculate low-rank component of the cost This method returns the nuclear norm error of the deconvolved data in matrix form Returns ------- float low-rank cost component """ cost_val = self.thresh * nuclear_norm(cube2matrix(args[0])) if 'verbose' in kwargs and kwargs['verbose']: print(' - NUCLEAR NORM (X):', cost_val) return cost_val