コード例 #1
0
def evaluation_cross_validation_regression (train_fname=traindat,label_fname=label_traindat,width=0.8,tau=1e-6):
	from modshogun import CrossValidation, CrossValidationResult
	from modshogun import MeanSquaredError, CrossValidationSplitting
	from modshogun import RegressionLabels, RealFeatures
	from modshogun import GaussianKernel, KernelRidgeRegression, CSVFile

	# training data
	features=RealFeatures(CSVFile(train_fname))
	labels=RegressionLabels(CSVFile(label_fname))

	# kernel and predictor
	kernel=GaussianKernel()
	predictor=KernelRidgeRegression(tau, kernel, labels)

	# splitting strategy for 5 fold cross-validation (for classification its better
	# to use "StratifiedCrossValidation", but here, the std x-val is used
	splitting_strategy=CrossValidationSplitting(labels, 5)

	# evaluation method
	evaluation_criterium=MeanSquaredError()

	# cross-validation instance
	cross_validation=CrossValidation(predictor, features, labels,
			splitting_strategy, evaluation_criterium)

	# (optional) repeat x-val 10 times
	cross_validation.set_num_runs(10)

	# (optional) tell machine to precompute kernel matrix. speeds up. may not work
	predictor.data_lock(labels, features)

	# perform cross-validation and print(results)
	result=cross_validation.evaluate()
def modelselection_grid_search_liblinear_modular (traindat=traindat, label_traindat=label_traindat):
    from modshogun import CrossValidation, CrossValidationResult
    from modshogun import ContingencyTableEvaluation, ACCURACY
    from modshogun import StratifiedCrossValidationSplitting
    from modshogun import GridSearchModelSelection
    from modshogun import ModelSelectionParameters, R_EXP
    from modshogun import ParameterCombination
    from modshogun import BinaryLabels
    from modshogun import RealFeatures
    from modshogun import LibLinear, L2R_L2LOSS_SVC

    # build parameter tree to select C1 and C2
    param_tree_root=ModelSelectionParameters()
    c1=ModelSelectionParameters("C1");
    param_tree_root.append_child(c1)
    c1.build_values(-1.0, 0.0, R_EXP);

    c2=ModelSelectionParameters("C2");
    param_tree_root.append_child(c2);
    c2.build_values(-1.0, 0.0, R_EXP);

    # training data
    features=RealFeatures(traindat)
    labels=BinaryLabels(label_traindat)

    # classifier
    classifier=LibLinear(L2R_L2LOSS_SVC)

    # print all parameter available for modelselection
    # Dont worry if yours is not included but, write to the mailing list
    #classifier.print_modsel_params()

    # splitting strategy for cross-validation
    splitting_strategy=StratifiedCrossValidationSplitting(labels, 10)

    # evaluation method
    evaluation_criterium=ContingencyTableEvaluation(ACCURACY)

    # cross-validation instance
    cross_validation=CrossValidation(classifier, features, labels,
                                     splitting_strategy, evaluation_criterium)
    cross_validation.set_autolock(False)

    # model selection instance
    model_selection=GridSearchModelSelection(cross_validation, param_tree_root)

    # perform model selection with selected methods
    #print "performing model selection of"
    #param_tree_root.print_tree()
    best_parameters=model_selection.select_model()

    # print best parameters
    #print "best parameters:"
    #best_parameters.print_tree()

    # apply them and print result
    best_parameters.apply_to_machine(classifier)
    result=cross_validation.evaluate()
def modelselection_random_search_liblinear_modular (traindat=traindat, label_traindat=label_traindat):
    from modshogun import CrossValidation, CrossValidationResult
    from modshogun import ContingencyTableEvaluation, ACCURACY
    from modshogun import StratifiedCrossValidationSplitting
    from modshogun import RandomSearchModelSelection
    from modshogun import ModelSelectionParameters, R_EXP
    from modshogun import ParameterCombination
    from modshogun import BinaryLabels
    from modshogun import RealFeatures
    from modshogun import LibLinear, L2R_L2LOSS_SVC

    # build parameter tree to select C1 and C2
    param_tree_root=ModelSelectionParameters()
    c1=ModelSelectionParameters("C1");
    param_tree_root.append_child(c1)
    c1.build_values(-2.0, 2.0, R_EXP);

    c2=ModelSelectionParameters("C2");
    param_tree_root.append_child(c2);
    c2.build_values(-2.0, 2.0, R_EXP);

    # training data
    features=RealFeatures(traindat)
    labels=BinaryLabels(label_traindat)

    # classifier
    classifier=LibLinear(L2R_L2LOSS_SVC)

    # print all parameter available for modelselection
    # Dont worry if yours is not included but, write to the mailing list
    #classifier.print_modsel_params()

    # splitting strategy for cross-validation
    splitting_strategy=StratifiedCrossValidationSplitting(labels, 10)

    # evaluation method
    evaluation_criterium=ContingencyTableEvaluation(ACCURACY)

    # cross-validation instance
    cross_validation=CrossValidation(classifier, features, labels,
                                     splitting_strategy, evaluation_criterium)
    cross_validation.set_autolock(False)

    # model selection instance
    model_selection=RandomSearchModelSelection(cross_validation, param_tree_root, 0.5)

    # perform model selection with selected methods
    #print "performing model selection of"
    #param_tree_root.print_tree()
    best_parameters=model_selection.select_model()

    # print best parameters
    #print "best parameters:"
    #best_parameters.print_tree()

    # apply them and print result
    best_parameters.apply_to_machine(classifier)
    result=cross_validation.evaluate()
コード例 #4
0
def modelselection_grid_search_kernel(num_subsets, num_vectors, dim_vectors):
    # init seed for reproducability
    Math.init_random(1)
    random.seed(1)

    # create some (non-sense) data
    matrix = random.rand(dim_vectors, num_vectors)

    # create num_feautres 2-dimensional vectors
    features = RealFeatures()
    features.set_feature_matrix(matrix)

    # create labels, two classes
    labels = BinaryLabels(num_vectors)
    for i in range(num_vectors):
        labels.set_label(i, 1 if i % 2 == 0 else -1)

    # create svm
    classifier = LibSVM()

    # splitting strategy
    splitting_strategy = StratifiedCrossValidationSplitting(
        labels, num_subsets)

    # accuracy evaluation
    evaluation_criterion = ContingencyTableEvaluation(ACCURACY)

    # cross validation class for evaluation in model selection
    cross = CrossValidation(classifier, features, labels, splitting_strategy,
                            evaluation_criterion)
    cross.set_num_runs(1)

    # print all parameter available for modelselection
    # Dont worry if yours is not included, simply write to the mailing list
    #classifier.print_modsel_params()

    # model parameter selection
    param_tree = create_param_tree()
    #param_tree.print_tree()

    grid_search = GridSearchModelSelection(cross, param_tree)

    print_state = False
    best_combination = grid_search.select_model(print_state)
    #print("best parameter(s):")
    #best_combination.print_tree()

    best_combination.apply_to_machine(classifier)

    # larger number of runs to have tighter confidence intervals
    cross.set_num_runs(10)
    cross.set_conf_int_alpha(0.01)
    result = cross.evaluate()
    casted = CrossValidationResult.obtain_from_generic(result)
    #print "result mean:", casted.mean

    return classifier, result, casted.mean
def evaluation_cross_validation_mkl_weight_storage(
        traindat=traindat, label_traindat=label_traindat):
    from modshogun import CrossValidation, CrossValidationResult
    from modshogun import CrossValidationPrintOutput
    from modshogun import CrossValidationMKLStorage
    from modshogun import ContingencyTableEvaluation, ACCURACY
    from modshogun import StratifiedCrossValidationSplitting
    from modshogun import BinaryLabels
    from modshogun import RealFeatures, CombinedFeatures
    from modshogun import GaussianKernel, CombinedKernel
    from modshogun import LibSVM, MKLClassification

    # training data, combined features all on same data
    features = RealFeatures(traindat)
    comb_features = CombinedFeatures()
    comb_features.append_feature_obj(features)
    comb_features.append_feature_obj(features)
    comb_features.append_feature_obj(features)
    labels = BinaryLabels(label_traindat)

    # kernel, different Gaussians combined
    kernel = CombinedKernel()
    kernel.append_kernel(GaussianKernel(10, 0.1))
    kernel.append_kernel(GaussianKernel(10, 1))
    kernel.append_kernel(GaussianKernel(10, 2))

    # create mkl using libsvm, due to a mem-bug, interleaved is not possible
    svm = MKLClassification(LibSVM())
    svm.set_interleaved_optimization_enabled(False)
    svm.set_kernel(kernel)

    # splitting strategy for 5 fold cross-validation (for classification its better
    # to use "StratifiedCrossValidation", but the standard
    # "StratifiedCrossValidationSplitting" is also available
    splitting_strategy = StratifiedCrossValidationSplitting(labels, 5)

    # evaluation method
    evaluation_criterium = ContingencyTableEvaluation(ACCURACY)

    # cross-validation instance
    cross_validation = CrossValidation(svm, comb_features, labels,
                                       splitting_strategy,
                                       evaluation_criterium)
    cross_validation.set_autolock(False)

    # append cross vlaidation output classes
    #cross_validation.add_cross_validation_output(CrossValidationPrintOutput())
    mkl_storage = CrossValidationMKLStorage()
    cross_validation.add_cross_validation_output(mkl_storage)
    cross_validation.set_num_runs(3)

    # perform cross-validation
    result = cross_validation.evaluate()

    # print mkl weights
    weights = mkl_storage.get_mkl_weights()
コード例 #6
0
def modelselection_grid_search_kernel (num_subsets, num_vectors, dim_vectors):
	# init seed for reproducability
	Math.init_random(1)
	random.seed(1);

	# create some (non-sense) data
	matrix=random.rand(dim_vectors, num_vectors)

	# create num_feautres 2-dimensional vectors
	features=RealFeatures()
	features.set_feature_matrix(matrix)

	# create labels, two classes
	labels=BinaryLabels(num_vectors)
	for i in range(num_vectors):
		labels.set_label(i, 1 if i%2==0 else -1)

	# create svm
	classifier=LibSVM()

	# splitting strategy
	splitting_strategy=StratifiedCrossValidationSplitting(labels, num_subsets)

	# accuracy evaluation
	evaluation_criterion=ContingencyTableEvaluation(ACCURACY)

	# cross validation class for evaluation in model selection
	cross=CrossValidation(classifier, features, labels, splitting_strategy, evaluation_criterion)
	cross.set_num_runs(1)

	# print all parameter available for modelselection
	# Dont worry if yours is not included, simply write to the mailing list
	#classifier.print_modsel_params()

	# model parameter selection
	param_tree=create_param_tree()
	#param_tree.print_tree()

	grid_search=GridSearchModelSelection(cross, param_tree)

	print_state=False
	best_combination=grid_search.select_model(print_state)
	#print("best parameter(s):")
	#best_combination.print_tree()

	best_combination.apply_to_machine(classifier)

	# larger number of runs to have tighter confidence intervals
	cross.set_num_runs(10)
	cross.set_conf_int_alpha(0.01)
	result=cross.evaluate()
	casted=CrossValidationResult.obtain_from_generic(result);
	#print "result mean:", casted.mean

	return classifier,result,casted.mean
コード例 #7
0
def evaluation_cross_validation_classification(traindat=traindat,
                                               label_traindat=label_traindat):
    from modshogun import CrossValidation, CrossValidationResult
    from modshogun import ContingencyTableEvaluation, ACCURACY
    from modshogun import StratifiedCrossValidationSplitting
    from modshogun import BinaryLabels
    from modshogun import RealFeatures
    from modshogun import LibLinear, L2R_L2LOSS_SVC

    # training data
    features = RealFeatures(traindat)
    labels = BinaryLabels(label_traindat)

    # classifier
    classifier = LibLinear(L2R_L2LOSS_SVC)

    # splitting strategy for 5 fold cross-validation (for classification its better
    # to use "StratifiedCrossValidation", but the standard
    # "CrossValidationSplitting" is also available
    splitting_strategy = StratifiedCrossValidationSplitting(labels, 5)

    # evaluation method
    evaluation_criterium = ContingencyTableEvaluation(ACCURACY)

    # cross-validation instance
    cross_validation = CrossValidation(classifier, features, labels,
                                       splitting_strategy,
                                       evaluation_criterium)
    cross_validation.set_autolock(False)

    # (optional) repeat x-val 10 times
    cross_validation.set_num_runs(10)

    # perform cross-validation and print(results)
    result = cross_validation.evaluate()
def evaluation_cross_validation_mkl_weight_storage(traindat=traindat, label_traindat=label_traindat):
    from modshogun import CrossValidation, CrossValidationResult
    from modshogun import CrossValidationPrintOutput
    from modshogun import CrossValidationMKLStorage
    from modshogun import ContingencyTableEvaluation, ACCURACY
    from modshogun import StratifiedCrossValidationSplitting
    from modshogun import BinaryLabels
    from modshogun import RealFeatures, CombinedFeatures
    from modshogun import GaussianKernel, CombinedKernel
    from modshogun import LibSVM, MKLClassification
    from modshogun import Statistics

    # training data, combined features all on same data
    features=RealFeatures(traindat)
    comb_features=CombinedFeatures()
    comb_features.append_feature_obj(features)
    comb_features.append_feature_obj(features)
    comb_features.append_feature_obj(features)
    labels=BinaryLabels(label_traindat)

    # kernel, different Gaussians combined
    kernel=CombinedKernel()
    kernel.append_kernel(GaussianKernel(10, 0.1))
    kernel.append_kernel(GaussianKernel(10, 1))
    kernel.append_kernel(GaussianKernel(10, 2))

    # create mkl using libsvm, due to a mem-bug, interleaved is not possible
    svm=MKLClassification(LibSVM());
    svm.set_interleaved_optimization_enabled(False);
    svm.set_kernel(kernel);

    # splitting strategy for 5 fold cross-validation (for classification its better
    # to use "StratifiedCrossValidation", but the standard
    # "StratifiedCrossValidationSplitting" is also available
    splitting_strategy=StratifiedCrossValidationSplitting(labels, 5)

    # evaluation method
    evaluation_criterium=ContingencyTableEvaluation(ACCURACY)

    # cross-validation instance
    cross_validation=CrossValidation(svm, comb_features, labels,
        splitting_strategy, evaluation_criterium)
    cross_validation.set_autolock(False)

    # append cross vlaidation output classes
    #cross_validation.add_cross_validation_output(CrossValidationPrintOutput())
    mkl_storage=CrossValidationMKLStorage()
    cross_validation.add_cross_validation_output(mkl_storage)
    cross_validation.set_num_runs(3)

    # perform cross-validation
    result=cross_validation.evaluate()

    # print mkl weights
    weights=mkl_storage.get_mkl_weights()
コード例 #9
0
def evaluation_cross_validation_classification (traindat=traindat, label_traindat=label_traindat):
    from modshogun import CrossValidation, CrossValidationResult
    from modshogun import ContingencyTableEvaluation, ACCURACY
    from modshogun import StratifiedCrossValidationSplitting
    from modshogun import BinaryLabels
    from modshogun import RealFeatures
    from modshogun import LibLinear, L2R_L2LOSS_SVC

    # training data
    features=RealFeatures(traindat)
    labels=BinaryLabels(label_traindat)

    # classifier
    classifier=LibLinear(L2R_L2LOSS_SVC)

    # splitting strategy for 5 fold cross-validation (for classification its better
    # to use "StratifiedCrossValidation", but the standard
    # "CrossValidationSplitting" is also available
    splitting_strategy=StratifiedCrossValidationSplitting(labels, 5)

    # evaluation method
    evaluation_criterium=ContingencyTableEvaluation(ACCURACY)

    # cross-validation instance
    cross_validation=CrossValidation(classifier, features, labels,
	    splitting_strategy, evaluation_criterium)
    cross_validation.set_autolock(False)

    # (optional) repeat x-val 10 times
    cross_validation.set_num_runs(10)

    # perform cross-validation and print(results)
    result=cross_validation.evaluate()
コード例 #10
0
def evaluation_cross_validation_regression(train_fname=traindat,
                                           label_fname=label_traindat,
                                           width=0.8,
                                           tau=1e-6):
    from modshogun import CrossValidation, CrossValidationResult
    from modshogun import MeanSquaredError, CrossValidationSplitting
    from modshogun import RegressionLabels, RealFeatures
    from modshogun import GaussianKernel, KernelRidgeRegression, CSVFile

    # training data
    features = RealFeatures(CSVFile(train_fname))
    labels = RegressionLabels(CSVFile(label_fname))

    # kernel and predictor
    kernel = GaussianKernel()
    predictor = KernelRidgeRegression(tau, kernel, labels)

    # splitting strategy for 5 fold cross-validation (for classification its better
    # to use "StratifiedCrossValidation", but here, the std x-val is used
    splitting_strategy = CrossValidationSplitting(labels, 5)

    # evaluation method
    evaluation_criterium = MeanSquaredError()

    # cross-validation instance
    cross_validation = CrossValidation(predictor, features, labels,
                                       splitting_strategy,
                                       evaluation_criterium)

    # (optional) repeat x-val 10 times
    cross_validation.set_num_runs(10)

    # (optional) tell machine to precompute kernel matrix. speeds up. may not work
    predictor.data_lock(labels, features)

    # perform cross-validation and print(results)
    result = cross_validation.evaluate()
コード例 #11
0
def modelselection_grid_search_krr_modular (fm_train=traindat,fm_test=testdat,label_train=label_traindat,\
           width=2.1,C=1,epsilon=1e-5,tube_epsilon=1e-2):
    from modshogun import CrossValidation, CrossValidationResult
    from modshogun import MeanSquaredError
    from modshogun import CrossValidationSplitting
    from modshogun import RegressionLabels
    from modshogun import RealFeatures
    from modshogun import KernelRidgeRegression
    from modshogun import GridSearchModelSelection
    from modshogun import ModelSelectionParameters

    # training data
    features_train = RealFeatures(traindat)
    features_test = RealFeatures(testdat)
    labels = RegressionLabels(label_traindat)

    # labels
    labels = RegressionLabels(label_train)

    # predictor, set tau=0 here, doesnt matter
    predictor = KernelRidgeRegression()

    # splitting strategy for 5 fold cross-validation (for classification its better
    # to use "StratifiedCrossValidation", but the standard
    # "StratifiedCrossValidationSplitting" is also available
    splitting_strategy = CrossValidationSplitting(labels, 5)

    # evaluation method
    evaluation_criterium = MeanSquaredError()

    # cross-validation instance
    cross_validation = CrossValidation(predictor, features_train, labels,
                                       splitting_strategy,
                                       evaluation_criterium)

    # (optional) repeat x-val (set larger to get better estimates)
    cross_validation.set_num_runs(2)

    # print all parameter available for modelselection
    # Dont worry if yours is not included but, write to the mailing list
    #predictor.print_modsel_params()

    # build parameter tree to select regularization parameter
    param_tree_root = create_param_tree()

    # model selection instance
    model_selection = GridSearchModelSelection(cross_validation,
                                               param_tree_root)

    # perform model selection with selected methods
    #print "performing model selection of"
    #print "parameter tree:"
    #param_tree_root.print_tree()

    #print "starting model selection"
    # print the current parameter combination, if no parameter nothing is printed
    print_state = False

    best_parameters = model_selection.select_model(print_state)

    # print best parameters
    #print "best parameters:"
    #best_parameters.print_tree()

    # apply them and print result
    best_parameters.apply_to_machine(predictor)
    result = cross_validation.evaluate()
def modelselection_grid_search_krr_modular (fm_train=traindat,fm_test=testdat,label_train=label_traindat,\
				       width=2.1,C=1,epsilon=1e-5,tube_epsilon=1e-2):
    from modshogun import CrossValidation, CrossValidationResult
    from modshogun import MeanSquaredError
    from modshogun import CrossValidationSplitting
    from modshogun import RegressionLabels
    from modshogun import RealFeatures
    from modshogun import KernelRidgeRegression
    from modshogun import GridSearchModelSelection
    from modshogun import ModelSelectionParameters

    # training data
    features_train=RealFeatures(traindat)
    features_test=RealFeatures(testdat)
    labels=RegressionLabels(label_traindat)

    # labels
    labels=RegressionLabels(label_train)

    # predictor, set tau=0 here, doesnt matter
    predictor=KernelRidgeRegression()

    # splitting strategy for 5 fold cross-validation (for classification its better
    # to use "StratifiedCrossValidation", but the standard
    # "StratifiedCrossValidationSplitting" is also available
    splitting_strategy=CrossValidationSplitting(labels, 5)

    # evaluation method
    evaluation_criterium=MeanSquaredError()

    # cross-validation instance
    cross_validation=CrossValidation(predictor, features_train, labels,
	    splitting_strategy, evaluation_criterium)

    # (optional) repeat x-val (set larger to get better estimates, at least two
    # for confidence intervals)
    cross_validation.set_num_runs(2)

    # (optional) request 95% confidence intervals for results (not actually needed
    # for this toy example)
    cross_validation.set_conf_int_alpha(0.05)

    # print all parameter available for modelselection
    # Dont worry if yours is not included but, write to the mailing list
    #predictor.print_modsel_params()

    # build parameter tree to select regularization parameter
    param_tree_root=create_param_tree()

    # model selection instance
    model_selection=GridSearchModelSelection(cross_validation, param_tree_root)

    # perform model selection with selected methods
    #print "performing model selection of"
    #print "parameter tree:"
    #param_tree_root.print_tree()

    #print "starting model selection"
    # print the current parameter combination, if no parameter nothing is printed
    print_state=False

    best_parameters=model_selection.select_model(print_state)

    # print best parameters
    #print "best parameters:"
    #best_parameters.print_tree()

    # apply them and print result
    best_parameters.apply_to_machine(predictor)
    result=cross_validation.evaluate()
コード例 #13
0
def modelselection_grid_search_libsvr_modular (fm_train=traindat,fm_test=testdat,label_train=label_traindat,\
           width=2.1,C=1,epsilon=1e-5,tube_epsilon=1e-2):
    from modshogun import CrossValidation, CrossValidationResult
    from modshogun import MeanSquaredError
    from modshogun import CrossValidationSplitting
    from modshogun import RegressionLabels
    from modshogun import RealFeatures
    from modshogun import GaussianKernel
    from modshogun import LibSVR
    from modshogun import GridSearchModelSelection
    from modshogun import ModelSelectionParameters, R_EXP
    from modshogun import ParameterCombination

    # training data
    features_train = RealFeatures(traindat)
    labels = RegressionLabels(label_traindat)

    # kernel
    kernel = GaussianKernel(features_train, features_train, width)

    # print all parameter available for modelselection
    # Dont worry if yours is not included but, write to the mailing list
    #kernel.print_modsel_params()

    labels = RegressionLabels(label_train)

    # predictor
    predictor = LibSVR(C, tube_epsilon, kernel, labels)
    predictor.set_epsilon(epsilon)

    # splitting strategy for 5 fold cross-validation (for classification its better
    # to use "StratifiedCrossValidation", but the standard
    # "StratifiedCrossValidationSplitting" is also available
    splitting_strategy = CrossValidationSplitting(labels, 5)

    # evaluation method
    evaluation_criterium = MeanSquaredError()

    # cross-validation instance
    cross_validation = CrossValidation(predictor, features_train, labels,
                                       splitting_strategy,
                                       evaluation_criterium)

    #	 (optional) repeat x-val (set larger to get better estimates, at least two
    # for confidence intervals)
    cross_validation.set_num_runs(2)

    # (optional) request 95% confidence intervals for results (not actually
    # needed for this toy example)
    cross_validation.set_conf_int_alpha(0.05)

    # print all parameter available for modelselection
    # Dont worry if yours is not included but, write to the mailing list
    #predictor.print_modsel_params()

    # build parameter tree to select C1 and C2
    param_tree_root = ModelSelectionParameters()
    c1 = ModelSelectionParameters("C1")
    param_tree_root.append_child(c1)
    c1.build_values(-1.0, 0.0, R_EXP)

    c2 = ModelSelectionParameters("C2")
    param_tree_root.append_child(c2)
    c2.build_values(-1.0, 0.0, R_EXP)

    # model selection instance
    model_selection = GridSearchModelSelection(cross_validation,
                                               param_tree_root)

    # perform model selection with selected methods
    #print "performing model selection of"
    #print "parameter tree"
    #param_tree_root.print_tree()

    #print "starting model selection"
    # print the current parameter combination, if no parameter nothing is printed
    print_state = False
    # lock data before since model selection will not change the kernel matrix
    # (use with care) This avoids that the kernel matrix is recomputed in every
    # iteration of the model search
    predictor.data_lock(labels, features_train)
    best_parameters = model_selection.select_model(print_state)

    # print best parameters
    #print "best parameters:"
    #best_parameters.print_tree()

    # apply them and print result
    best_parameters.apply_to_machine(predictor)
    result = cross_validation.evaluate()
コード例 #14
0
def evaluation_cross_validation_multiclass_storage (traindat=traindat, label_traindat=label_traindat):
    from modshogun import CrossValidation, CrossValidationResult
    from modshogun import CrossValidationPrintOutput
    from modshogun import CrossValidationMKLStorage, CrossValidationMulticlassStorage
    from modshogun import MulticlassAccuracy, F1Measure
    from modshogun import StratifiedCrossValidationSplitting
    from modshogun import MulticlassLabels
    from modshogun import RealFeatures, CombinedFeatures
    from modshogun import GaussianKernel, CombinedKernel
    from modshogun import MKLMulticlass
    from modshogun import Statistics, MSG_DEBUG, Math

    Math.init_random(1)

    # training data, combined features all on same data
    features=RealFeatures(traindat)
    comb_features=CombinedFeatures()
    comb_features.append_feature_obj(features)
    comb_features.append_feature_obj(features)
    comb_features.append_feature_obj(features)
    labels=MulticlassLabels(label_traindat)

    # kernel, different Gaussians combined
    kernel=CombinedKernel()
    kernel.append_kernel(GaussianKernel(10, 0.1))
    kernel.append_kernel(GaussianKernel(10, 1))
    kernel.append_kernel(GaussianKernel(10, 2))

    # create mkl using libsvm, due to a mem-bug, interleaved is not possible
    svm=MKLMulticlass(1.0,kernel,labels);
    svm.set_kernel(kernel);

    # splitting strategy for 5 fold cross-validation (for classification its better
    # to use "StratifiedCrossValidation", but the standard
    # "StratifiedCrossValidationSplitting" is also available
    splitting_strategy=StratifiedCrossValidationSplitting(labels, 3)

    # evaluation method
    evaluation_criterium=MulticlassAccuracy()

    # cross-validation instance
    cross_validation=CrossValidation(svm, comb_features, labels,
        splitting_strategy, evaluation_criterium)
    cross_validation.set_autolock(False)

    # append cross vlaidation output classes
    #cross_validation.add_cross_validation_output(CrossValidationPrintOutput())
    #mkl_storage=CrossValidationMKLStorage()
    #cross_validation.add_cross_validation_output(mkl_storage)
    multiclass_storage=CrossValidationMulticlassStorage()
    multiclass_storage.append_binary_evaluation(F1Measure())
    cross_validation.add_cross_validation_output(multiclass_storage)
    cross_validation.set_num_runs(3)

    # perform cross-validation
    result=cross_validation.evaluate()

    roc_0_0_0 = multiclass_storage.get_fold_ROC(0,0,0)
    #print roc_0_0_0
    auc_0_0_0 = multiclass_storage.get_fold_evaluation_result(0,0,0,0)
    #print auc_0_0_0
    return roc_0_0_0, auc_0_0_0