コード例 #1
0
def metric_lmnn_modular(train_fname=traindat,
                        test_fname=testdat,
                        label_train_fname=label_traindat,
                        k=3):
    try:
        from modshogun import RealFeatures, MulticlassLabels, LMNN, KNN, CSVFile
    except ImportError:
        return

    # wrap features and labels into Shogun objects
    feats_train = RealFeatures(CSVFile(train_fname))
    feats_test = RealFeatures(CSVFile(test_fname))
    labels = MulticlassLabels(CSVFile(label_train_fname))

    # LMNN
    lmnn = LMNN(feats_train, labels, k)
    lmnn.train()
    lmnn_distance = lmnn.get_distance()

    # perform classification with KNN
    knn = KNN(k, lmnn_distance, labels)
    knn.train()
    output = knn.apply(feats_test).get_labels()

    return lmnn, output
コード例 #2
0
def test_LMNN():
    X = np.eye(80)
    Y = np.array([i for j in range(4) for i in range(20)])
    feats = RealFeatures(X.T)
    labs = MulticlassLabels(Y.astype(np.float64))
    arr = LMNN(feats, labs, 2)
    arr.train()
    L = arr.get_linear_transform()
    X_proj = np.dot(L, X.T)
    test_x = np.eye(80)[0:20:]
    test = RealFeatures(test_x.T)
    test_proj = np.dot(L, test_x.T)
    pdb.set_trace()
コード例 #3
0
def run_knn(Xtrain,Ytrain,Xtest,Ytest):
    prod_features = RealFeatures(Xtrain)
    prod_labels = MulticlassLabels(Ytrain)
    test_features = RealFeatures(Xtest)
    test_labels = MulticlassLabels(Ytest)

    if os.path.exists(".lmnn_model30000_5_reg05_cor20"):
        print "Using LMNN distance"
        lmnn = LMNN()
        sf = SerializableAsciiFile(".lmnn_model30000_5_reg05_cor20", 'r')
        lmnn.load_serializable(sf)

        diagonal = np.diag(lmnn.get_linear_transform())
        #print('%d out of %d elements are non-zero.' % (np.sum(diagonal != 0), diagonal.size))
        #diagonal = lmnn.get_linear_transform()
        np.set_printoptions(precision=1,threshold=1e10,linewidth=500)

        #lmnn.set_diagonal(True)
        dist = lmnn.get_distance()
    else:
        dist = EuclideanDistance()

    # classifier
    knn = KNN(K, dist, prod_labels)
    #knn.set_use_covertree(True)
    parallel = knn.get_global_parallel()
    parallel.set_num_threads(4)
    knn.set_global_parallel(parallel)
    knn.train(prod_features)

    print "Classifying test set..."
    pred = knn.apply_multiclass(test_features)

    print "Accuracy = %2.2f%%" % (100*np.mean(pred == Ytest))

    cm = build_confusion_matrix(Ytest, pred, NCLASSES)
    #save_confusion_matrix(cm)
    #cm = load_confusion_matrix()
    print "Confusion matrix: "
    print cm
    #plot_confusion_matrix(cm)

    #results = predict_class_prob(pred, cm)
    
    #nn = build_neighbours_matrix(knn, prod_labels)
    #results = predict_class_from_neighbours(nn)

    #print "Log loss: " + str(calculate_log_loss(results, Ytest))

    #print_prediction_output(results)
    return cm
コード例 #4
0
ファイル: metagenomics_ape.py プロジェクト: iglesias/tests
def diagonal_lmnn(features, labels, k=3, max_iter=10000):
    from modshogun import LMNN, MSG_DEBUG
    import numpy

    lmnn = LMNN(features, labels, k)
    # 	lmnn.io.set_loglevel(MSG_DEBUG)
    lmnn.set_diagonal(True)
    lmnn.set_maxiter(max_iter)
    lmnn.train(numpy.eye(features.get_num_features()))

    return lmnn
コード例 #5
0
ファイル: multiclass_digits.py プロジェクト: iglesias/tests
def lmnn(train_features, train_labels, test_features, test_labels, k=1):
	from modshogun import LMNN, KNN, MSG_DEBUG, MulticlassAccuracy
	import numpy

# 	dummy = LMNN()
# 	dummy.io.set_loglevel(MSG_DEBUG)

	lmnn = LMNN(train_features, train_labels, k)
	lmnn.train()
	distance = lmnn.get_distance()

	knn = KNN(k, distance, train_labels) 
	knn.train()

	train_output = knn.apply()
	test_output = knn.apply(test_features)
	evaluator = MulticlassAccuracy()
	print 'LMNN training error is %.4f' % ((1-evaluator.evaluate(train_output, train_labels))*100)
	print 'LMNN test error is %.4f' % ((1-evaluator.evaluate(test_output, test_labels))*100)
コード例 #6
0
def main():

    # Get training file name from the command line
    traindatafile = sys.argv[1]

    # The training file is in libSVM format

    with open(traindatafile, mode="r") as myFile:
        lines = myFile.readlines()

    random.shuffle(lines)
    open("tempdata.dat", 'w').writelines(lines)

    tr_data = load_svmlight_file("tempdata.dat")
    #To randomly select 5000 points

    Xtr = tr_data[0].toarray()
    # Converts sparse matrices to dense
    Ytr = tr_data[1]
    # The trainig labels

    Xtr = Xtr[:5000]
    Ytr = Ytr[:5000]
    # Cast data to Shogun format to work with LMNN
    features = RealFeatures(Xtr.T)
    labels = MulticlassLabels(Ytr.astype(np.float64))

    #print(Xtr.shape)
    ### Do magic stuff here to learn the best metric you can ###
    kmax = 25  #inductive bias
    values = list(range(1, kmax + 1))
    k = predict(Xtr, Ytr, values)
    # Number of target neighbours per example - tune this using validation
    #print(k)
    # Initialize the LMNN package
    print("K : "),
    print(k)

    k = 5
    lmnn = LMNN(features, labels, k)
    init_transform = np.eye(Xtr.shape[1])

    # Choose an appropriate timeout
    lmnn.set_maxiter(25000)
    lmnn.train(init_transform)

    # Let LMNN do its magic and return a linear transformation
    # corresponding to the Mahalanobis metric it has learnt
    L = lmnn.get_linear_transform()
    M = np.matrix(np.dot(L.T, L))

    print("LMNN done")
    #print(M)
    # Save the model for use in testing phase
    # Warning: do not change this file name
    np.save("model.npy", M)
コード例 #7
0
def lmnn(train_features, train_labels, test_features, test_labels, k=1):
    from modshogun import LMNN, KNN, MSG_DEBUG, MulticlassAccuracy
    import numpy

    # 	dummy = LMNN()
    # 	dummy.io.set_loglevel(MSG_DEBUG)

    lmnn = LMNN(train_features, train_labels, k)
    lmnn.train()
    distance = lmnn.get_distance()

    knn = KNN(k, distance, train_labels)
    knn.train()

    train_output = knn.apply()
    test_output = knn.apply(test_features)
    evaluator = MulticlassAccuracy()
    print 'LMNN training error is %.4f' % (
        (1 - evaluator.evaluate(train_output, train_labels)) * 100)
    print 'LMNN test error is %.4f' % (
        (1 - evaluator.evaluate(test_output, test_labels)) * 100)
コード例 #8
0
ファイル: metagenomics_ape.py プロジェクト: iglesias/tests
def diagonal_lmnn(features,labels,k=3,max_iter=10000):
	from modshogun import LMNN, MSG_DEBUG
	import numpy

	lmnn = LMNN(features,labels,k)
# 	lmnn.io.set_loglevel(MSG_DEBUG)
	lmnn.set_diagonal(True)
	lmnn.set_maxiter(max_iter)
	lmnn.train(numpy.eye(features.get_num_features()))

	return lmnn
コード例 #9
0
def metric_lmnn_modular(train_fname=traindat,test_fname=testdat,label_train_fname=label_traindat,k=3):
	try:
		from modshogun import RealFeatures,MulticlassLabels,LMNN,KNN,CSVFile
	except ImportError:
		return

	# wrap features and labels into Shogun objects
	feats_train=RealFeatures(CSVFile(train_fname))
	feats_test=RealFeatures(CSVFile(test_fname))
	labels=MulticlassLabels(CSVFile(label_train_fname))

	# LMNN
	lmnn=LMNN(feats_train,labels,k)
	lmnn.train()
	lmnn_distance=lmnn.get_distance()

	# perform classification with KNN
	knn=KNN(k,lmnn_distance,labels)
	knn.train()
	output=knn.apply(feats_test).get_labels()

	return lmnn,output
コード例 #10
0
ファイル: train.py プロジェクト: timkartar/CS771_ML
def main():
    # Get training file name from the command line
    traindatafile = sys.argv[1]

    # The training file is in libSVM format
    tr_data = load_svmlight_file(traindatafile)
    print("loaded data")
    init_transform = np.eye(tr_data[0].toarray().shape[1])
    print(init_transform)
    Xtr = tr_data[0][:6000].toarray()
    # Converts sparse matrices to dense
    Ytr = tr_data[1][:6000]
    # The trainig labels
    # Cast data to Shogun format to work with LMNN
    features = RealFeatures(Xtr.T)
    labels = MulticlassLabels(Ytr.astype(np.float64))

    ### Do magic stuff here to learn the best metric you can ###

    # Number of target neighbours per example - tune this using validation
    k = 21

    # Initialize the LMNN package
    print("starting lmnn train....")
    lmnn = LMNN(features, labels, k)

    # Choose an appropriate timeout
    lmnn.set_maxiter(3000)
    lmnn.train(init_transform)
    # Let LMNN do its magic and return a linear transformation
    # corresponding to the Mahalanobis metric it has learnt
    L = lmnn.get_linear_transform()
    M = np.matrix(np.dot(L.T, L))
    print(M)
    # Save the model for use in testing phase
    # Warning: do not change this file name
    statistics = lmnn.get_statistics()
    pyplot.plot(statistics.obj.get())
    pyplot.grid(True)
    pyplot.xlabel('Number of iterations')
    pyplot.ylabel('LMNN objective')
    pyplot.show()
    np.save("model.npy", M)
コード例 #11
0
def main(): 

    # Get training file name from the command line
    traindatafile = sys.argv[1]

	# The training file is in libSVM format
    tr_data = load_svmlight_file(traindatafile);

    Xtr = tr_data[0].toarray(); # Converts sparse matrices to dense
    Ytr = tr_data[1]; # The trainig labels

    Indices_array = np.arange(Ytr.shape[0]);
    np.random.shuffle(Indices_array);

    Xtr = Xtr[Indices_array];
    Xtr = Xtr[:6000];

    Ytr = Ytr[Indices_array];
    Ytr = Ytr[:6000];

    # Cast data to Shogun format to work with LMNN
    features = RealFeatures(Xtr.T)
    labels = MulticlassLabels(Ytr.astype(np.float64))

    ### Do magic stuff here to learn the best metric you can ###

    # Number of target neighbours per example - tune this using validation
    k = 10
    
    # Initialize the LMNN package
    lmnn = LMNN(features, labels, k)
    init_transform = np.eye(Xtr.shape[1])

    # Choose an appropriate timeout
    lmnn.set_maxiter(200000)
    lmnn.train(init_transform)

    # Let LMNN do its magic and return a linear transformation
	# corresponding to the Mahalanobis metric it has learnt
    L = lmnn.get_linear_transform()
    M = np.matrix(np.dot(L.T, L))

    # Save the model for use in testing phase
	# Warning: do not change this file name
    np.save("model.npy", M) 
コード例 #12
0
ファイル: multiclass_digits.py プロジェクト: iglesias/tests
def lmnn_diagonal(train_features, train_labels, test_features, test_labels, k=1):
	from modshogun import LMNN, KNN, MSG_DEBUG, MulticlassAccuracy
	import numpy

	lmnn = LMNN(train_features, train_labels, k)
	lmnn.set_diagonal(True)
	lmnn.train()
	distance = lmnn.get_distance()

	knn = KNN(k, distance, train_labels) 
	knn.train()

	train_output = knn.apply()
	test_output = knn.apply(test_features)
	evaluator = MulticlassAccuracy()
	print 'LMNN-diagonal training error is %.4f' % ((1-evaluator.evaluate(train_output, train_labels))*100)
	print 'LMNN-diagonal test error is %.4f' % ((1-evaluator.evaluate(test_output, test_labels))*100)
コード例 #13
0
ファイル: lmnn.py プロジェクト: manish7294/benchmarks
    def RunLMNNShogun():
      totalTimer = Timer()

      # Load input dataset.
      Log.Info("Loading dataset", self.verbose)
      # Use the last row of the training set as the responses.
      X, y = SplitTrainData(self.dataset)
      try:
        feat = RealFeatures(X.T)
        labels = MulticlassLabels(y.astype(np.float64))

        with totalTimer:
          # Get the options for running LMNN.
          if "k" in options:
            self.k = int(options.pop("k"))

          if "maxiter" in options:
            n = int(options.pop("maxiter"))
          else:
            n = 2000

          if len(options) > 0:
            Log.Fatal("Unknown parameters: " + str(options))
            raise Exception("unknown parameters")

          # Perform LMNN.
          prep = ShogunLMNN(feat, labels, self.k)
          prep.set_maxiter(n)
          prep.train()
      except Exception as e:
        return [-1, -1]

      time = totalTimer.ElapsedTime()

      # Get distance.
      distance = prep.get_linear_transform()
      dataList = [X, y]
      accuracy1NN = Metrics.KNNAccuracy(distance, dataList, 1, False)
      accuracy3NN = Metrics.KNNAccuracy(distance, dataList, 3, False)
      accuracy3NNDW = Metrics.KNNAccuracy(distance, dataList, 3, True)
      accuracy5NN = Metrics.KNNAccuracy(distance, dataList, 5, False)
      accuracy5NNDW = Metrics.KNNAccuracy(distance, dataList, 5, True)

      return [time, accuracy1NN, accuracy3NN, accuracy3NNDW,
          accuracy5NN, accuracy5NNDW]
コード例 #14
0
ファイル: metagenomics_ape.py プロジェクト: iglesias/tests
def lmnn_classify(traindat, testdat, k=3):
    from modshogun import LMNN, KNN, MulticlassAccuracy, MSG_DEBUG

    train_features, train_labels = traindat.features, traindat.labels

    lmnn = LMNN(train_features, train_labels, k)
    lmnn.set_maxiter(1200)
    lmnn.io.set_loglevel(MSG_DEBUG)
    lmnn.train()

    distance = lmnn.get_distance()
    knn = KNN(k, distance, train_labels)
    knn.train()

    test_features, test_labels = testdat.features, testdat.labels

    predicted_labels = knn.apply(test_features)
    evaluator = MulticlassAccuracy()
    acc = evaluator.evaluate(predicted_labels, test_labels)
    err = 1 - acc

    return err
コード例 #15
0
def metric_lmnn_statistics(
        k=3,
        fname_features='../../data/fm_train_multiclass_digits.dat.gz',
        fname_labels='../../data/label_train_multiclass_digits.dat'):
    try:
        from modshogun import LMNN, CSVFile, RealFeatures, MulticlassLabels, MSG_DEBUG
        import matplotlib.pyplot as pyplot
    except ImportError:
        print 'Error importing modshogun or other required modules. Please, verify their installation.'
        return

    features = RealFeatures(load_compressed_features(fname_features).T)
    labels = MulticlassLabels(CSVFile(fname_labels))

    #	print 'number of examples = %d' % features.get_num_vectors()
    #	print 'number of features = %d' % features.get_num_features()

    assert (features.get_num_vectors() == labels.get_num_labels())

    # train LMNN
    lmnn = LMNN(features, labels, k)
    lmnn.set_correction(100)
    #	lmnn.io.set_loglevel(MSG_DEBUG)
    print 'Training LMNN, this will take about two minutes...'
    lmnn.train()
    print 'Training done!'

    # plot objective obtained during training
    statistics = lmnn.get_statistics()

    pyplot.plot(statistics.obj.get())
    pyplot.grid(True)
    pyplot.xlabel('Iterations')
    pyplot.ylabel('LMNN objective')
    pyplot.title(
        'LMNN objective during training for the multiclass digits data set')

    pyplot.show()
コード例 #16
0
def lmnn_diagonal(train_features,
                  train_labels,
                  test_features,
                  test_labels,
                  k=1):
    from modshogun import LMNN, KNN, MSG_DEBUG, MulticlassAccuracy
    import numpy

    lmnn = LMNN(train_features, train_labels, k)
    lmnn.set_diagonal(True)
    lmnn.train()
    distance = lmnn.get_distance()

    knn = KNN(k, distance, train_labels)
    knn.train()

    train_output = knn.apply()
    test_output = knn.apply(test_features)
    evaluator = MulticlassAccuracy()
    print 'LMNN-diagonal training error is %.4f' % (
        (1 - evaluator.evaluate(train_output, train_labels)) * 100)
    print 'LMNN-diagonal test error is %.4f' % (
        (1 - evaluator.evaluate(test_output, test_labels)) * 100)
コード例 #17
0
def main():

    Xtr, Ytr = gettrainData()
    Xtr = Xtr[:len(Xtr) // 6]
    Ytr = Ytr[:len(Ytr) // 6]

    # Cast data to Shogun format to work with LMNN
    features = RealFeatures(Xtr.T)
    labels = MulticlassLabels(Ytr.astype(np.float64))
    print(2.1)

    ### Do magic stuff here to learn the best metric you can ###
    # Number of target neighbours per example - tune this using validation
    k = 10
    # Initialize the LMNN package
    lmnn = LMNN(features, labels, k)
    print(2.2)

    init_transform = np.eye(Xtr.shape[1])
    print(2.3)

    # Choose an appropriate timeout
    lmnn.set_maxiter(8000)
    print(2.4)
    lmnn.train(init_transform)
    print(2.5)

    # Let LMNN do its magic and return a linear transformation
    # corresponding to the Mahalanobis metric it has learnt
    L = lmnn.get_linear_transform()
    print(2.6)
    M = np.matrix(np.dot(L.T, L))
    print(2.7)

    # Save the model for use in testing phase
    # Warning: do not change this file name
    np.save("model2.npy", M)
コード例 #18
0
ファイル: metagenomics_ape.py プロジェクト: iglesias/tests
def lmnn_classify(traindat, testdat, k=3):
	from modshogun import LMNN, KNN, MulticlassAccuracy, MSG_DEBUG

	train_features, train_labels = traindat.features, traindat.labels

	lmnn = LMNN(train_features, train_labels, k)
	lmnn.set_maxiter(1200)
	lmnn.io.set_loglevel(MSG_DEBUG)
	lmnn.train()

	distance = lmnn.get_distance()
	knn = KNN(k, distance, train_labels)
	knn.train()

	test_features, test_labels = testdat.features, testdat.labels

	predicted_labels = knn.apply(test_features)
	evaluator = MulticlassAccuracy()
	acc = evaluator.evaluate(predicted_labels, test_labels)
	err = 1-acc

	return err
コード例 #19
0
def metric_lmnn_statistics(
    k=3,
    fname_features="../../data/fm_train_multiclass_digits.dat.gz",
    fname_labels="../../data/label_train_multiclass_digits.dat",
):
    try:
        from modshogun import LMNN, CSVFile, RealFeatures, MulticlassLabels, MSG_DEBUG
        import matplotlib.pyplot as pyplot
    except ImportError:
        print "Error importing modshogun or other required modules. Please, verify their installation."
        return

    features = RealFeatures(load_compressed_features(fname_features).T)
    labels = MulticlassLabels(CSVFile(fname_labels))

    # 	print 'number of examples = %d' % features.get_num_vectors()
    # 	print 'number of features = %d' % features.get_num_features()

    assert features.get_num_vectors() == labels.get_num_labels()

    # train LMNN
    lmnn = LMNN(features, labels, k)
    lmnn.set_correction(100)
    # 	lmnn.io.set_loglevel(MSG_DEBUG)
    print "Training LMNN, this will take about two minutes..."
    lmnn.train()
    print "Training done!"

    # plot objective obtained during training
    statistics = lmnn.get_statistics()

    pyplot.plot(statistics.obj.get())
    pyplot.grid(True)
    pyplot.xlabel("Iterations")
    pyplot.ylabel("LMNN objective")
    pyplot.title("LMNN objective during training for the multiclass digits data set")

    pyplot.show()
コード例 #20
0
print('%d vectors with %d features' %
      (features.get_num_vectors(), features.get_num_features()))
assert (features.get_num_vectors() == labels.get_num_labels())

distance = EuclideanDistance(features, features)
k = 2
knn = KNN(k, distance, labels)

plot_data(x, y, axarr[0])
plot_neighborhood_graph(x, knn.nearest_neighbors(), axarr[0])
axarr[0].set_aspect('equal')
axarr[0].set_xlim(-6, 4)
axarr[0].set_ylim(-3, 2)

lmnn = LMNN(features, labels, k)
lmnn.set_maxiter(10000)
lmnn.train()
L = lmnn.get_linear_transform()
knn.set_distance(lmnn.get_distance())

plot_data(x, y, axarr[1])
plot_neighborhood_graph(x, knn.nearest_neighbors(), axarr[1])
axarr[1].set_aspect('equal')
axarr[1].set_xlim(-6, 4)
axarr[1].set_ylim(-3, 2)

xL = numpy.dot(x, L.T)  ## to see the data after the linear transformation
features = RealFeatures(xL.T)
distance = EuclideanDistance(features, features)
knn.set_distance(distance)
コード例 #21
0
print "Training data size: " + str(Xtrain.shape)
print "Test data size: " + str(Xtest.shape)  

N = Xtest.shape[0]

prod_features = RealFeatures(Xtrain.T)
prod_labels = MulticlassLabels(Ytrain.T)
test_features = RealFeatures(Xtest.T)

k = 5

# load LMNN
if os.path.exists(".lmnn_model30000_5_reg05_cor20"):
    sf = SerializableAsciiFile(".lmnn_model30000_5_reg05_cor20", 'r')
    lmnn = LMNN()
    lmnn.load_serializable(sf)

    diagonal = np.diag(lmnn.get_linear_transform())
    print('%d out of %d elements are non-zero.' % (np.sum(diagonal != 0), diagonal.size))
    #print diagonal
    dist = lmnn.get_distance()
else:
    dist = EuclideanDistance()

cm = load_confusion_matrix()
print cm

# classifier
knn = KNN(k, dist, prod_labels)
parallel = knn.get_global_parallel()
コード例 #22
0
#!/usr/bin/python

from scipy import io

data_dict = io.loadmat('../data/NBData20_train_preprocessed.mat')

xt = data_dict['xt']
yt = data_dict['yt']

import numpy
from modshogun import RealFeatures, MulticlassLabels, LMNN, MSG_DEBUG

features = RealFeatures(xt.T)
labels = MulticlassLabels(numpy.squeeze(yt))

k = 6
lmnn = LMNN(features, labels, k)
lmnn.io.set_loglevel(MSG_DEBUG)
lmnn.set_diagonal(True)
lmnn.set_maxiter(10000)
lmnn.train(numpy.eye(features.get_num_features()))
コード例 #23
0
#!/usr/bin/python

from scipy import io

data_dict = io.loadmat('../data/NBData20_train_preprocessed.mat')

xt = data_dict['xt']
yt = data_dict['yt']

import numpy
from modshogun import RealFeatures,MulticlassLabels,LMNN,MSG_DEBUG

features = RealFeatures(xt.T)
labels = MulticlassLabels(numpy.squeeze(yt))

k = 6
lmnn = LMNN(features,labels,k)
lmnn.io.set_loglevel(MSG_DEBUG)
lmnn.set_diagonal(True)
lmnn.set_maxiter(10000)
lmnn.train(numpy.eye(features.get_num_features()))

コード例 #24
0
ファイル: neighbourhood_graph.py プロジェクト: iglesias/tests
labels = MulticlassLabels(y)

print('%d vectors with %d features' % (features.get_num_vectors(), features.get_num_features()))
assert(features.get_num_vectors() == labels.get_num_labels())

distance = EuclideanDistance(features, features)
k = 2
knn = KNN(k, distance, labels)

plot_data(x, y, axarr[0])
plot_neighborhood_graph(x, knn.nearest_neighbors(), axarr[0])
axarr[0].set_aspect('equal')
axarr[0].set_xlim(-6, 4)
axarr[0].set_ylim(-3, 2)

lmnn = LMNN(features, labels, k)
lmnn.set_maxiter(10000)
lmnn.train()
L = lmnn.get_linear_transform()
knn.set_distance(lmnn.get_distance())

plot_data(x, y, axarr[1])
plot_neighborhood_graph(x, knn.nearest_neighbors(), axarr[1])
axarr[1].set_aspect('equal')
axarr[1].set_xlim(-6, 4)
axarr[1].set_ylim(-3, 2)

xL = numpy.dot(x, L.T) ## to see the data after the linear transformation
features = RealFeatures(xL.T)
distance = EuclideanDistance(features, features)
knn.set_distance(distance)
コード例 #25
0
random.seed(13)
subset = random.permutation(len(Y))

Xtrain = X[subset[:30000],:]
Ytrain = Y[subset[:30000]]

print "Training data used: " + str(Xtrain.shape)


prod_features = RealFeatures(Xtrain.T)
prod_labels = MulticlassLabels(Ytrain.T)

k = 5

# train LMNN
sf = SerializableAsciiFile(".lmnn_model30000_5_reg05_cor20", 'w')

print "Training LMNN..." 
#init_t = np.eye(features.shape[1])
lmnn = LMNN(prod_features, prod_labels, k)
lmnn.set_maxiter(800)
#lmnn.set_diagonal(True)
lmnn.set_stepsize_threshold(1e-10)
lmnn.set_regularization(0.5)
lmnn.set_correction(20)
#lmnn.train(init_t)
lmnn.train()
lmnn.save_serializable(sf)

plot_lmnn_statistics(lmnn)