コード例 #1
0
        "/Users/Dani/TDK/parameter_estim/stim_protocol2/zap/best_comb/%i/stim.txt"
        % item)
    working_path = "/Users/Dani/TDK/parameter_estim/stim_protocol2/zap/best_comb/%i" % item

    # Do statistics for each parameter
    stat_list = []
    for _ in p_names:
        stat_list.append(np.empty((n, 6), dtype=np.float))

    # Load fixed parameters: list of parameters to be inferred
    fixed_params = []
    for name in p_names:
        fixed_params.append(get_default_param(name))

    # Generate deterministic trace and create synthetic data with noise model
    t, v = model(stype='custom', custom_stim=stim)
    data = white(noise, v)

    pset = ParameterSet(*fixed_params)

    modell = partial(model, stype='custom', custom_stim=stim)
    inf = IndependentInference(model=modell,
                               noise_std=noise,
                               target_trace=data,
                               parameter_set=pset,
                               working_path=working_path,
                               speed=speed)

    if __name__ == '__main__':
        inf.run_sim()
コード例 #2
0
startTime = time.time()
for i in range(num_of_iter):
    print(str(i) + " is DONE out of " + str(num_of_iter))

    # Sampling current parameter from normal distribution
    current_Ra = np.random.normal(pRa.mean, 10)
    current_gpas = np.random.normal(pgpas.mean, pgpas.sigma)
    current_cm = np.random.normal(pcm.mean, pcm.sigma)

    # Generate deterministic trace and create synthetic data with noise model
    t, v = stick_and_ball(Ra=current_Ra,
                          gpas=current_gpas,
                          cm=current_cm,
                          stype='custom',
                          custom_stim=stim)
    data = white(noise_sigma, v)

    # if i == 0:
    #     plt.figure()
    #     plt.title("Neuron voltage response to stimuli")
    #     plt.xlabel('Time [ms]')
    #     plt.ylabel('Voltage [mV]')
    #     plt.plot(t, v, color='#2FA5A0')
    #     plt.show()

    # Set up range in a way that the true parameter value will be in the middle
    Ra_start = current_Ra - 50
    Ra_end = current_Ra + 50
    gpas_start = current_gpas - 0.00005
    gpas_end = current_gpas + 0.00005
    cm_start = current_cm - 0.5
コード例 #3
0
                    value=1.)
gpas = RandomVariable(name='gpas',
                      range_min=0.00005,
                      range_max=0.00015,
                      resolution=60,
                      mean=0.00008,
                      sigma=0.00002,
                      value=0.0001)
# Ra = RandomVariable(name='Ra', range_min=50., range_max=150., resolution=60, mean=100., sigma=20.)

# 2.) Set up parameter set
cm_gpas = ParameterSet(cm, gpas)

# 3.) Sythetic data
t, v = stick_and_ball()
exp_v = white(noise, v)

# 4.) Set up inference
inf = IndependentInference(
    model=stick_and_ball,
    noise_std=noise,
    target_trace=exp_v,
    parameter_set=cm_gpas,
    working_path=
    "/home/terbed/PROJECTS/SPE/parameter-inference/module/examples/output",
    speed='max',
    save=False)

# 5.) Run inference
if __name__ == "__main__":
    inf.run_sim()