コード例 #1
0
ファイル: model.py プロジェクト: iWangLimin/RSF
 def pan_feature_extraction(self, name, pan):
     with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
         with tf.variable_scope('low_level_extraction'):
             feature = pan
             feature = conv('conv1', feature, 32)
             feature = conv('conv2', feature, 32)
         with tf.variable_scope('down_sample1'):
             feature = self.downsample(feature, 32)
         feature = dense_block('dense_block1',
                               feature,
                               12,
                               conv_num=6,
                               input_include=True)
         feature = bottle_neck('bottle_neck1', feature, 64)
         with tf.variable_scope('down_sample2'):
             feature = self.downsample(feature, 64)
         feature = dense_block('dense_block2',
                               feature,
                               12,
                               conv_num=6,
                               input_include=True)
         feature = bottle_neck('bottle_neck2', feature, 64)
         feature = dense_block('dense_block3',
                               feature,
                               12,
                               conv_num=8,
                               input_include=True)
         feature = bottle_neck('bottle_neck3', feature, 96)
         with tf.variable_scope('upsample1', reuse=tf.AUTO_REUSE):
             pan_feature_1 = self.upsample(feature, out_channel=96)
             # pan_feature_1 = conv('conv', tf.concat([feature2, feature3], -1), filter_num=64)
         with tf.variable_scope('upsample2', reuse=tf.AUTO_REUSE):
             pan_feature_2 = self.upsample(pan_feature_1, out_channel=96)
             # pan_feature_2 = conv('conv', tf.concat([up_pan_feature_1, feature1], -1), filter_num=64)
         return pan_feature_1, pan_feature_2
コード例 #2
0
ファイル: model.py プロジェクト: iWangLimin/RSF
 def ms_feature_extraction(self, name, ms):
     with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
         with tf.variable_scope('low_level_extraction',
                                reuse=tf.AUTO_REUSE):
             feature1 = ms
             feature1 = conv('conv1', feature1, 64)
             feature1 = conv('conv2', feature1, 64)
         feature2 = dense_block('dense_block1',
                                feature1,
                                12,
                                conv_num=6,
                                input_include=True)
         feature2 = bottle_neck('bottle_neck1', feature2, 64)
         feature3 = dense_block('dense_block2',
                                feature2,
                                12,
                                conv_num=6,
                                input_include=True)
         feature3 = bottle_neck('bottle_neck2', feature3, 64)
         with tf.variable_scope('combanation'):
             feature = tf.concat([feature1, feature2, feature3], -1)
             feature = bottle_neck('bottle_neck', feature, 64)
         with tf.variable_scope('upsample1', reuse=tf.AUTO_REUSE):
             ms_feature_1 = self.upsample(feature, out_channel=64)
         with tf.variable_scope('upsample2', reuse=tf.AUTO_REUSE):
             ms_feature_2 = self.upsample(ms_feature_1, out_channel=64)
         return ms_feature_1, ms_feature_2
コード例 #3
0
ファイル: model.py プロジェクト: iWangLimin/RSF
 def feature_fusion(self, name, ms_feature, pan_feature):
     with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
         fusion_feature = tf.concat([ms_feature, pan_feature], axis=-1)
         channel_in = fusion_feature.get_shape().as_list()[-1]
         fusion_feature = conv('conv1', fusion_feature, filter_num=96)
         fusion_feature = conv('conv2', fusion_feature, filter_num=64)
         detail = conv('conv3', fusion_feature, 4, activation=None)
         return detail
コード例 #4
0
ファイル: camparsion.py プロジェクト: iWangLimin/RSF
 def forward(self, ms, pan):
     with tf.variable_scope('PNN', reuse=tf.AUTO_REUSE):
         up_ms = tf.image.resize_bicubic(ms,
                                         size=(self.ms_size * 4,
                                               self.ms_size * 4))
         x = tf.concat([up_ms, pan], -1)
         with tf.variable_scope('opt1', reuse=tf.AUTO_REUSE):
             feature = conv('conv1', x, 64, 9, activation='lrelu')
             feature = conv('conv2', feature, 32, 5, activation='lrelu')
         with tf.variable_scope('opt2', reuse=tf.AUTO_REUSE):
             fusion=conv('conv3',feature,4,5,activation=None)\
                 +up_ms
         return fusion
コード例 #5
0
ファイル: model.py プロジェクト: iWangLimin/RSF
 def pan_feature_extraction(self, name, pan):
     with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
         feature = pan
         for i in range(8):
             feature = conv('conv%d' % (i + 1), feature, 64, 5)
         with tf.variable_scope('downsample', reuse=tf.AUTO_REUSE):
             feature1 = self.downsample(feature, 64)
         return feature1, feature
コード例 #6
0
ファイル: model.py プロジェクト: iWangLimin/RSF
 def ms_feature_extraction(self, name, ms):
     with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
         feature = ms
         for i in range(6):
             feature = conv('conv%d' % (i + 1), feature, 64)
         with tf.variable_scope('upsample1', reuse=tf.AUTO_REUSE):
             ms_feature_1 = self.upsample(feature, out_channel=64)
         with tf.variable_scope('upsample2', reuse=tf.AUTO_REUSE):
             ms_feature_2 = self.upsample(ms_feature_1, out_channel=64)
         return ms_feature_1, ms_feature_2
コード例 #7
0
ファイル: camparsion.py プロジェクト: iWangLimin/RSF
 def forward(self, ms, pan):
     with tf.variable_scope('RSIFNN', reuse=tf.AUTO_REUSE):
         with tf.variable_scope('ms', reuse=tf.AUTO_REUSE):
             up_ms = tf.image.resize_bicubic(
                 ms, (self.ms_size * 4, self.ms_size * 4))
             feature_ms = conv('conv1', up_ms, activation='lrelu')
             feature_ms = conv('conv2',
                               feature_ms,
                               filter_num=32,
                               activation='lrelu')
         with tf.variable_scope('pan', reuse=tf.AUTO_REUSE):
             feature_pan = pan
             for i in range(1, 8):
                 feature_pan = conv('conv%d' % (i),
                                    feature_pan,
                                    activation='lrelu')
             feature_pan = conv('conv%d' % (i + 1),
                                feature_pan,
                                filter_num=32,
                                activation='lrelu')
         with tf.variable_scope('fusion', reuse=tf.AUTO_REUSE):
             features = tf.concat([feature_ms, feature_pan], -1)
             return up_ms + conv('conv', features, 4, activation=None)
コード例 #8
0
ファイル: model.py プロジェクト: iWangLimin/RSF
 def pan_feature_extraction(self, name, pan):
     with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
         l1, l2, l3 = LapFusionConfig.pan_depth
         l1, l2 = l1 - 1, l2 - 1
         feature_channel = LapFusionConfig.pan_featurec_channel
         with tf.variable_scope('block1', reuse=tf.AUTO_REUSE):
             feature = pan
             for i in range(1, l1 + 1):
                 feature = conv('conv%d' % (i), feature, feature_channel[0])
         with tf.variable_scope('down_sample1', reuse=tf.AUTO_REUSE):
             feature = self.downsample(feature,
                                       out_channel=feature_channel[0])
         with tf.variable_scope('block2', reuse=tf.AUTO_REUSE):
             for i in range(1, l2 + 1):
                 feature = conv('conv%d' % (i), feature, feature_channel[1])
             # res=feature
             # for i in range(1,l2):
             #     res=conv('conv%d'%(i),res,feature_channel[1])
             # res=conv('conv%d'%(i+1),res,64,activation=None)
             # feature=tf.nn.leaky_relu(res+feature)
         with tf.variable_scope('down_sample2', reuse=tf.AUTO_REUSE):
             feature = self.downsample(feature,
                                       out_channel=feature_channel[1])
         with tf.variable_scope('block3', reuse=tf.AUTO_REUSE):
             for i in range(1, l3 + 1):
                 feature = conv('conv%d' % (i), feature, feature_channel[1])
             # res=feature
             # for i in range(1,l3):
             #     res=conv('conv%d'%(i),res,feature_channel[2])
             # res=conv('conv%d'%(i+1),res,feature_channel[2],activation=None)
             # feature=tf.nn.leaky_relu(res+feature)
         with tf.variable_scope('upsample1', reuse=tf.AUTO_REUSE):
             pan_feature_1 = self.upsample(feature, out_channel=64)
         with tf.variable_scope('upsample2', reuse=tf.AUTO_REUSE):
             pan_feature_2 = self.upsample(pan_feature_1, out_channel=64)
         return pan_feature_1, pan_feature_2
コード例 #9
0
ファイル: model.py プロジェクト: iWangLimin/RSF
 def ms_feature_extraction(self, name, ms):
     with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
         with tf.variable_scope('low_level_extraction',
                                reuse=tf.AUTO_REUSE):
             feature = ms
             feature = conv('conv1', feature, 32)
             feature = conv('conv2', feature, 32)
         feature = dense_block('dense_block1',
                               feature,
                               12,
                               conv_num=4,
                               input_include=True)
         feature = bottle_neck('bottle_neck1', feature, 64)
         feature = dense_block('dense_block2',
                               feature,
                               12,
                               conv_num=6,
                               input_include=True)
         feature = bottle_neck('bottle_neck2', feature, 96)
         with tf.variable_scope('upsample1', reuse=tf.AUTO_REUSE):
             ms_feature_1 = self.upsample(feature, out_channel=96)
         with tf.variable_scope('upsample2', reuse=tf.AUTO_REUSE):
             ms_feature_2 = self.upsample(ms_feature_1, out_channel=96)
         return ms_feature_1, ms_feature_2
コード例 #10
0
ファイル: model.py プロジェクト: iWangLimin/RSF
 def ms_feature_extraction(self, name, ms):
     with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
         # feature=conv('conv1',ms,LapFusionConfig.ms_feature_channel)
         # feature=conv('conv2',feature,LapFusionConfig.ms_feature_channel)
         # res=feature
         # for i in range(3,8):
         #     res=conv('conv%d'%(i),res,LapFusionConfig.ms_feature_channel)
         # res=conv('conv%d'%(i+1),res,LapFusionConfig.ms_feature_channel,activation=None)
         # feature=tf.nn.leaky_relu(feature+res)
         feature = ms
         for i in range(1, LapFusionConfig.ms_depth + 1):
             feature = conv('conv%d' % (i), feature,
                            LapFusionConfig.ms_feature_channel)
         with tf.variable_scope('upsample1', reuse=tf.AUTO_REUSE):
             ms_feature_1 = self.upsample(feature, out_channel=64)
         with tf.variable_scope('upsample2', reuse=tf.AUTO_REUSE):
             ms_feature_2 = self.upsample(ms_feature_1, out_channel=64)
         return ms_feature_1, ms_feature_2
コード例 #11
0
ファイル: model.py プロジェクト: iWangLimin/RSF
 def downsample(self, feature, out_channel, scale=2):
     # with tf.variable_scope(name,reuse=tf.AUTO_REUSE):
     return conv('down_conv', feature, out_channel, strides=scale)
コード例 #12
0
def yolov4(input_img):
    net = module.conv(input_img, 32, 3, 1)

    net = module.conv(net, 64, 3, 2)
    route = module.conv(net, 64, 1, 1)
    net = module.conv(net, 64, 1, 1)
    tmp = net
    net = module.conv(net, 32, 1, 1)
    net = module.conv(net, 64, 3, 1)
    net = tmp + net
    net = module.conv(net, 64, 1, 1)
    net = tf.concat([net, route], -1) 
    net = module.conv(net, 64, 1, 1)

    net = module.conv(net, 128, 3, 2)
    route = module.conv(net, 64, 1, 1)
    net = module.conv(net, 64, 1, 1)
    for _ in range(2):
        tmp = net
        net = module.conv(net, 64, 1, 1)
        net = module.conv(net, 64, 3, 1)
        net = tmp + net
    net = module.conv(net, 64, 1, 1)
    net = tf.concat([net, route], -1) 
    net = module.conv(net, 128, 1, 1)
    
    net = module.conv(net, 256, 3, 2)
    route = module.conv(net, 128, 1, 1)
    net = module.conv(net, 128, 1, 1)
    for _ in range(8):
        tmp = net
        net = module.conv(net, 128, 1, 1)
        net = module.conv(net, 128, 3, 1)
        net = tmp + net
    net = module.conv(net, 128, 1, 1)
    net = tf.concat([net, route], -1) 
    net = module.conv(net, 256, 1, 1)

    for_output1 = net

    net = module.conv(net, 512, 3, 2)
    route = module.conv(net, 256, 1, 1)
    net = module.conv(net, 256, 1, 1)
    for _ in range(8):
        tmp = net
        net = module.conv(net, 256, 1, 1)
        net = module.conv(net, 256, 3, 1)
        net = tmp + net
    net = module.conv(net, 256, 1, 1)
    net = tf.concat([net, route], -1) 
    net = module.conv(net, 512, 1, 1)

    for_output2 = net

    net = module.conv(net, 1024, 3, 2)
    route = module.conv(net, 512, 1, 1)
    net = module.conv(net, 512, 1, 1)
    for _ in range(4):
        tmp = net
        net = module.conv(net, 512, 1, 1)
        net = module.conv(net, 512, 3, 1)
        net = tmp + net
    net = module.conv(net, 512, 1, 1)
    net = tf.concat([net, route], -1) 
    net = module.conv(net, 1024, 1, 1)

    # SPP
    pool_5 = tf.nn.max_pool(net, [1, 5, 5, 1], [1, 1, 1, 1], 'SAME')
    pool_9 = tf.nn.max_pool(net, [1, 9, 9, 1], [1, 1, 1, 1], 'SAME')
    pool_13 = tf.nn.max_pool(net, [1, 13, 13, 1], [1, 1, 1, 1], 'SAME')
    net = tf.concat([pool_13, pool_9, pool_5, net], -1)

    net = module.conv(net, 512, 1, 1)
    net = module.conv(net, 1024, 3, 1)
    net = module.conv(net, 512, 1, 1)
    output3 = net
    
    net = module.conv(net, 256, 1, 1)
    shape = tf.shape(net)
    out_height, out_width = shape[1]*2, shape[2]*2
    net = tf.compat.v1.image.resize_nearest_neighbor(net, (out_height, out_width))
    for_output2 = module.conv(for_output2, 256, 1, 1)
    net = tf.concat([for_output2, net], -1)

    net = module.conv(net, 256, 1, 1)
    net = module.conv(net, 512, 3, 1)
    net = module.conv(net, 256, 1, 1)
    net = module.conv(net, 512, 3, 1)
    net = module.conv(net, 256, 1, 1)
    output2 = net

    net = module.conv(net, 128, 1, 1)
    shape = tf.shape(net)
    out_height, out_width = shape[1]*2, shape[2]*2
    net = tf.compat.v1.image.resize_nearest_neighbor(net, (out_height, out_width))
    for_output1 = module.conv(for_output1, 128, 1, 1)
    net = tf.concat([for_output1, net], -1)

    net = module.conv(net, 128, 1, 1)
    net = module.conv(net, 256, 3, 1)
    net = module.conv(net, 128, 1, 1)
    net = module.conv(net, 256, 3, 1)
    net = module.conv(net, 128, 1, 1)
    output1 = net

    net = module.conv(output1, 256, 3, 1)
    net = module.conv(net, 3*(4+1+config.class_num), 1, 1,
            normalizer_fn=None, activation_fn=None, 
            biases_initializer=tf.zeros_initializer())
    label3 = net

    net = module.conv(output1, 256, 3, 2)
    net = tf.concat([net, output2], -1)
    net = module.conv(net, 256, 1, 1)
    net = module.conv(net, 512, 3, 1)
    net = module.conv(net, 256, 1, 1)
    net = module.conv(net, 512, 3, 1)
    net = module.conv(net, 256, 1, 1)
    tmp_route = net

    net = module.conv(net, 512, 3, 1)
    net = module.conv(net, 3*(4+1+config.class_num), 1, 1,
            normalizer_fn=None, activation_fn=None, 
            biases_initializer=tf.zeros_initializer())
    label2 = net

    net = module.conv(tmp_route, 512, 3, 2)
    net = tf.concat([net, output3], -1)
    net = module.conv(net, 512, 1, 1)
    net = module.conv(net, 1024, 3, 1)
    net = module.conv(net, 512, 1, 1)
    net = module.conv(net, 1024, 3, 1)
    net = module.conv(net, 512, 1, 1)
    net = module.conv(net, 1024, 3, 1)
    net = module.conv(net, 3*(4+1+config.class_num), 1, 1,
            normalizer_fn=None, activation_fn=None, 
            biases_initializer=tf.zeros_initializer())
    label1 = net
    
    return label1, label2, label3