コード例 #1
0
def build_evaluator_model(kwargs):
    Model = warp_Model()
    import tensorflow as tf
    from module import RMCRNN
    from module import TmpHierRMCRNN_v2
    frames = kwargs["frames"]
    act_space = kwargs["act_space"]
    state_size = kwargs["state_size"]
    use_rmc = kwargs["use_rmc"]
    use_hrmc = kwargs["use_hrmc"]
    use_reward_prediction = kwargs["use_reward_prediction"]
    after_rnn = kwargs["after_rnn"]
    use_pixel_control = kwargs["use_pixel_control"]

    phs = dict()

    phs["s"] = tf.placeholder(dtype=tf.float32,
                              shape=[None, None, 84, 84, 3 * frames])
    phs["prev_a"] = tf.placeholder(dtype=tf.int32, shape=[None, None])
    phs["prev_r"] = tf.placeholder(dtype=tf.float32, shape=[None, None])

    if use_hrmc:
        phs["state_in"] = tf.placeholder(dtype=tf.float32,
                                         shape=[None, state_size])
        rnn = TmpHierRMCRNN_v2(4,
                               64,
                               4,
                               4,
                               8,
                               return_sequences=True,
                               return_state=True,
                               name="hrmcrnn")
    elif use_rmc:
        phs["state_in"] = tf.placeholder(dtype=tf.float32,
                                         shape=[None, state_size])
        rnn = RMCRNN(64,
                     4,
                     4,
                     return_sequences=True,
                     return_state=True,
                     name="rmcrnn")
    else:
        phs["state_in"] = tf.placeholder(dtype=tf.float32,
                                         shape=[None, state_size])
        rnn = tf.compat.v1.keras.layers.LSTM(256,
                                             return_sequences=True,
                                             return_state=True,
                                             name="lstm")

    model = Model(act_space, rnn, use_rmc, use_hrmc, use_reward_prediction,
                  after_rnn, use_pixel_control, "agent", **phs)

    return model
コード例 #2
0
ファイル: policy_graph.py プロジェクト: hybug/test_ppo
def build_evaluator_model(kwargs):
    Model = warp_Model()
    import tensorflow as tf
    from module import TmpHierRNN
    from module import AMCRNN
    from module import RMCRNN
    from module import NewLSTM

    frames = kwargs["frames"]
    image_size = kwargs["image_size"]
    act_space = kwargs["act_space"]
    gamma = kwargs["gamma"]
    n_step = kwargs["n_step"]
    time_scale = kwargs["time_scale"]
    state_size = kwargs["state_size"]
    use_hrnn = kwargs["use_hrnn"]
    use_rmc = kwargs["use_rmc"]
    use_amc = kwargs["use_amc"]
    use_beta = kwargs["use_beta"]
    use_reward_prediction = kwargs["use_reward_prediction"]
    after_rnn = kwargs["after_rnn"]
    use_pixel_control = kwargs["use_pixel_control"]

    phs = dict()

    phs["s"] = tf.placeholder(
        dtype=tf.uint8, shape=[None, None, image_size, image_size, frames])
    phs["a"] = tf.placeholder(dtype=tf.int32, shape=[None, None])
    phs["r"] = tf.placeholder(dtype=tf.float32, shape=[None, None])
    phs["state_in"] = tf.placeholder(dtype=tf.float32, shape=[None, state_size])

    if use_hrnn:
        rnn = TmpHierRNN(time_scale, 64, 4, 2, 8, 'lstm', 'rmc',
                         return_sequences=True, return_state=True, name="hrnn")
    elif use_rmc:
        rnn = RMCRNN(
            64, 4, 64,
            return_sequences=True, return_state=True, name="rmc")
    elif use_amc:
        rnn = AMCRNN(
            64, 4, 64,
            return_sequences=True, return_state=True, name="amc")
    else:
        rnn = NewLSTM(
            256, return_sequences=True, return_state=True, name="lstm")

    model = Model(act_space, gamma, n_step, rnn, use_hrnn, use_rmc, use_amc, use_beta, use_reward_prediction,
                  after_rnn, use_pixel_control, False, **phs)

    return model
コード例 #3
0
def build_learner(pre, post, ws, act_space, num_frames):
    global_step = tf.train.get_or_create_global_step()
    init_lr = FLAGS.init_lr
    decay = FLAGS.lr_decay
    warmup_steps = FLAGS.warmup_steps
    gamma = FLAGS.gamma
    n_step = FLAGS.n_step
    use_soft = FLAGS.use_soft
    time_scale = FLAGS.time_scale
    use_hrnn = FLAGS.use_hrnn
    use_rmc = FLAGS.use_rmc
    use_amc = FLAGS.use_amc
    use_reward_prediction = FLAGS.use_reward_prediction
    after_rnn = FLAGS.after_rnn
    use_pixel_control = FLAGS.use_pixel_control
    pq_kl_coef = FLAGS.pq_kl_coef
    p_kl_coef = FLAGS.p_kl_coef

    global_step_float = tf.cast(global_step, tf.float32)

    lr = tf.train.polynomial_decay(
        init_lr, global_step,
        FLAGS.total_environment_frames // (FLAGS.batch_size * FLAGS.seqlen),
        init_lr / 10.)
    is_warmup = tf.cast(global_step_float < warmup_steps, tf.float32)
    lr = is_warmup * global_step_float / warmup_steps * init_lr + (
        1.0 - is_warmup) * (init_lr * (1.0 - decay) + lr * decay)
    optimizer = tf.train.AdamOptimizer(lr)

    if FLAGS.zero_init:
        pre["state_in"] = tf.zeros_like(pre["state_in"])

    if use_hrnn:
        rnn = TmpHierRNN(time_scale,
                         64,
                         4,
                         2,
                         8,
                         'lstm',
                         'rmc',
                         return_sequences=True,
                         return_state=True,
                         name="hrnn")
    elif use_rmc:
        rnn = RMCRNN(64,
                     4,
                     64,
                     return_sequences=True,
                     return_state=True,
                     name="rmc")
    elif use_amc:
        rnn = AMCRNN(64,
                     4,
                     64,
                     return_sequences=True,
                     return_state=True,
                     name="amc")
    else:
        rnn = tf.compat.v1.keras.layers.CuDNNLSTM(256,
                                                  return_sequences=True,
                                                  return_state=True,
                                                  name="lstm")

    pre_model = Model(act_space, gamma, n_step, rnn, use_hrnn, use_rmc,
                      use_amc, use_reward_prediction, after_rnn,
                      use_pixel_control, False, **pre)

    post["state_in"] = tf.stop_gradient(pre_model.state_out)

    post_model = Model(act_space, gamma, n_step, rnn, use_hrnn, use_rmc,
                       use_amc, use_reward_prediction, after_rnn,
                       use_pixel_control, True, **post)

    q_loss = mse(post_model.qa, post_model.n_step_qs)
    q_loss = FLAGS.qf_coef * tf.reduce_mean(
        q_loss * post_model.mask[:, :-n_step] * ws[:, None])

    add_loss = 0.0
    if use_hrnn:
        pq_kl_loss = KL_from_gaussians(post_model.q_mus, post_model.q_sigmas,
                                       post_model.p_mus, post_model.p_sigmas)
        pq_kl_loss = tf.reduce_mean(pq_kl_loss * post_model.mask)

        p_kl_loss = KL_from_gaussians(post_model.p_mus, post_model.p_sigmas,
                                      tf.zeros_like(post_model.p_mus),
                                      0.01 * tf.ones_like(post_model.p_sigmas))
        p_kl_loss = tf.reduce_mean(p_kl_loss * post_model.mask)

        with tf.name_scope("hierarchy_loss"):
            tf.summary.scalar("kl_div_pq", pq_kl_loss)
            tf.summary.scalar("kl_div_prior", p_kl_loss)
        add_loss += pq_kl_coef * pq_kl_loss
        add_loss += p_kl_coef * p_kl_loss

    if use_reward_prediction:
        r_loss = tf.reduce_mean(
            mse(post_model.reward_prediction, post_model.r[:, 1:1 - n_step]) *
            post_model.mask[:, :-n_step])
        tf.summary.scalar("r_loss", r_loss)
        add_loss += r_loss

    if use_pixel_control:
        s = tf.cast(post_model.s[:, :1 - n_step, :, :, :], tf.float32) / 255.0
        target = s[:, 1:, :, :, :] - s[:, :-1, :, :, :]
        shape = get_shape(target)
        target = tf.reshape(
            target,
            (shape[0], shape[1], 4, shape[2] // 4, 4, shape[3] // 4, shape[4]))
        target = tf.reduce_mean(target, axis=(2, 4))
        pixel_loss = tf.reduce_mean(
            mse(post_model.pixel_control, target) *
            post_model.mask[:, :-n_step, None, None, None])
        with tf.name_scope("control_loss"):
            tf.summary.scalar("pixel_control_loss", pixel_loss)
        add_loss += pixel_loss

    loss = FLAGS.qf_coef * q_loss + add_loss

    abs_td = post_model.mask[:, :-n_step] * tf.abs(
        post_model.qa - rescaleTarget(post_model.n_step_rewards, gamma**n_step,
                                      post_model.qa1))
    avg_p = tf.reduce_mean(abs_td, axis=-1)
    max_p = tf.reduce_max(abs_td, axis=-1)
    priority = 0.9 * max_p + 0.1 * avg_p

    beta = tf.train.polynomial_decay(
        0.4, global_step,
        FLAGS.total_environment_frames // (FLAGS.batch_size * FLAGS.seqlen),
        1.0)

    train_op = miniOp(optimizer, loss, FLAGS.grad_clip)

    target_op = assignOp(1.0, {"q": "q_target"})

    dependency = [train_op]
    if use_soft:
        qf_entropy = entropy_from_logits(post_model.qf_logits)
        target_entropy = tf.train.polynomial_decay(
            0.9 * np.log(act_space),
            global_step,
            FLAGS.total_environment_frames //
            (FLAGS.batch_size * FLAGS.seqlen),
            0.5 * np.log(act_space),
            power=1.5)
        ent_loss = tf.reduce_mean(
            mse(qf_entropy,
                tf.cast(target_entropy, tf.float32)[None, None]))
        with tf.name_scope("ent_loss"):
            tf.summary.scalar("ent_loss", ent_loss)
        ent_op = miniOp(optimizer,
                        ent_loss,
                        grad_clip=FLAGS.grad_clip,
                        var_scope="temperature")
        dependency.append(ent_op)

    new_frames = tf.reduce_sum(post["mask"])

    with tf.control_dependencies(dependency):
        num_frames_and_train = tf.assign_add(num_frames, new_frames)
        global_step_and_train = tf.assign_add(global_step, 1)

    tf.summary.scalar("learning_rate", lr)
    tf.summary.scalar("q_loss", q_loss)
    tf.summary.scalar("all_loss", loss)

    return num_frames_and_train, global_step_and_train, target_op, priority, beta
コード例 #4
0
def build_learner(pre, post, act_space, num_frames):
    global_step = tf.train.get_or_create_global_step()
    init_lr = FLAGS.init_lr
    decay = FLAGS.lr_decay
    warmup_steps = FLAGS.warmup_steps
    use_rmc = FLAGS.use_rmc
    use_hrmc = FLAGS.use_hrmc
    use_hrnn = FLAGS.use_hrnn
    use_icm = FLAGS.use_icm
    use_coex = FLAGS.use_coex
    use_reward_prediction = FLAGS.use_reward_prediction
    after_rnn = FLAGS.after_rnn
    use_pixel_control = FLAGS.use_pixel_control
    use_pixel_reconstruction = FLAGS.use_pixel_reconstruction
    pq_kl_coef = FLAGS.pq_kl_coef
    p_kl_coef = FLAGS.p_kl_coef

    global_step_float = tf.cast(global_step, tf.float32)

    lr = tf.train.polynomial_decay(
        init_lr, global_step,
        FLAGS.total_environment_frames // (FLAGS.batch_size * FLAGS.seqlen),
        init_lr / 10.)
    is_warmup = tf.cast(global_step_float < warmup_steps, tf.float32)
    lr = is_warmup * global_step_float / warmup_steps * init_lr + (
        1.0 - is_warmup) * (init_lr * (1.0 - decay) + lr * decay)
    optimizer = tf.train.AdamOptimizer(lr)

    ent_coef = tf.train.polynomial_decay(
        FLAGS.ent_coef, global_step,
        FLAGS.total_environment_frames // (FLAGS.batch_size * FLAGS.seqlen),
        FLAGS.ent_coef / 10.)

    if FLAGS.zero_init:
        pre["state_in"] = tf.zeros_like(pre["state_in"])

    if use_hrnn:
        rnn = TmpHierRNN(4,
                         64,
                         4,
                         2,
                         8,
                         'lstm',
                         'rmc',
                         return_sequences=True,
                         return_state=True,
                         name="hrnn")
    elif use_hrmc:
        rnn = TmpHierRMCRNN(4,
                            64,
                            4,
                            4,
                            return_sequences=True,
                            return_state=True,
                            name="hrmcrnn")
    elif use_rmc:
        rnn = RMCRNN(64,
                     4,
                     4,
                     return_sequences=True,
                     return_state=True,
                     name="rmcrnn")
    else:
        rnn = tf.compat.v1.keras.layers.LSTM(256,
                                             return_sequences=True,
                                             return_state=True,
                                             name="lstm")
    pre_model = Model(act_space, rnn, use_rmc, use_hrmc or use_hrnn,
                      use_reward_prediction, after_rnn,
                      use_pixel_reconstruction, "agent", **pre)

    post["state_in"] = tf.stop_gradient(pre_model.state_out)

    post_model = Model(act_space, rnn, use_rmc, use_hrmc or use_hrnn,
                       use_reward_prediction, after_rnn,
                       use_pixel_reconstruction, "agent", **post)

    tf.summary.scalar("adv_mean", post_model.adv_mean)
    tf.summary.scalar("adv_std", post_model.adv_std)

    losses = dPPOcC(act=post_model.a_t,
                    policy_logits=post_model.current_act_logits,
                    old_policy_logits=post_model.old_act_logits,
                    advantage=post_model.advantage,
                    policy_clip=FLAGS.ppo_clip,
                    vf=post_model.current_value,
                    vf_target=post_model.ret,
                    value_clip=FLAGS.vf_clip,
                    old_vf=post_model.old_current_value)

    entropy_loss = tf.reduce_mean(
        entropy(post_model.current_act_logits) * post_model.slots)

    p_loss = tf.reduce_mean(losses.p_loss * post_model.slots)
    v_loss = tf.reduce_mean(losses.v_loss * post_model.slots)

    add_loss = 0.0
    if use_icm:
        icmloss = icm(post_model.cnn_feature[:, :-1, :],
                      post_model.cnn_feature[:, 1:, :], post_model.a_t[:, :-1],
                      act_space)
        add_loss += 0.2 * tf.reduce_mean(
            icmloss.f_loss * post_model.slots[:, :-1]) + 0.8 * tf.reduce_mean(
                icmloss.i_loss * post_model.slots[:, :-1])
    if use_coex:
        coexloss = coex(post_model.image_feature[:, :-1, :, :, :],
                        post_model.image_feature[:, 1:, :, :, :],
                        post_model.a_t[:, :-1], act_space)
        add_loss += tf.reduce_mean(coexloss * post_model.slots[:, :-1])
    if use_hrmc or use_hrnn:
        pq_kl_loss = KL_from_gaussians(post_model.q_mus, post_model.q_sigmas,
                                       post_model.p_mus, post_model.p_sigmas)
        pq_kl_loss = tf.reduce_mean(pq_kl_loss * post_model.slots)
        tf.summary.scalar("kl_div", pq_kl_loss)
        add_loss += pq_kl_coef * pq_kl_loss

        p_kl_loss = KL_from_gaussians(post_model.p_mus, post_model.p_sigmas,
                                      tf.zeros_like(post_model.p_mus),
                                      0.01 * tf.ones_like(post_model.p_sigmas))
        p_kl_loss = tf.reduce_mean(p_kl_loss * post_model.slots)
        tf.summary.scalar("kl_div_prior", p_kl_loss)
        add_loss += p_kl_coef * p_kl_loss
    if use_reward_prediction:
        r_loss = tf.reduce_mean(
            mse(post_model.reward_prediction, post_model.r_t) *
            post_model.slots)
        tf.summary.scalar("r_loss", r_loss)
        add_loss += r_loss
    if use_pixel_control:
        change_of_cells = tf.reduce_mean(post_model.s_t[:, 1:, :, :, :] -
                                         post_model.s_t[:, :-1, :, :, :],
                                         axis=-1)
        s_shape = get_shape(change_of_cells)
        s_H, s_W = s_shape[2:]
        ctr_H, ctr_W = get_shape(post_model.pixel_control)[2:4]
        change_of_cells = tf.reduce_mean(tf.reshape(
            change_of_cells,
            shape=s_shape[:2] + [ctr_H, s_H // ctr_H, ctr_W, s_W // ctr_W]),
                                         axis=(3, 5))

        ctr = tf.reduce_sum(
            tf.transpose(post_model.pixel_control, perm=(0, 1, 4, 2, 3)) *
            tf.one_hot(post_model.a_t,
                       depth=post_model.act_space,
                       dtype=tf.float32)[:, :, :, None, None],
            axis=2)[:, :-1, :, :]
        ctr_loss = tf.reduce_mean(mse(ctr, change_of_cells))
        tf.summary.scalar("pixel_control_loss", ctr_loss)
        add_loss += ctr_loss
    if use_pixel_reconstruction:
        rec_loss = tf.reduce_mean(
            mse(post_model.pixel_reconstruction, post_model.s_t) *
            post_model.slots[:, :, None, None, None])
        tf.summary.scalar("rec_loss", rec_loss)
        add_loss += rec_loss

    loss = (FLAGS.pi_coef * p_loss + FLAGS.vf_coef * v_loss -
            ent_coef * entropy_loss + add_loss)

    train_op = miniOp(optimizer, loss, FLAGS.grad_clip)

    new_frames = tf.reduce_sum(post["slots"])

    with tf.control_dependencies([train_op]):
        num_frames_and_train = tf.assign_add(num_frames, new_frames)
        global_step_and_train = tf.assign_add(global_step, 1)

    tf.summary.scalar("learning_rate", lr)
    tf.summary.scalar("ent_coef", ent_coef)
    tf.summary.scalar("ent_loss", entropy_loss)
    tf.summary.scalar("p_loss", p_loss)
    tf.summary.scalar("v_loss", v_loss)
    tf.summary.scalar("all_loss", loss)

    return num_frames_and_train, global_step_and_train
コード例 #5
0
ファイル: ray_trainer.py プロジェクト: hybug/test_ppo
def build_learner(pre, post, act_space, num_frames, batch_weights):
    global_step = tf.train.get_or_create_global_step()
    init_lr = FLAGS.init_lr
    decay = FLAGS.lr_decay
    warmup_steps = FLAGS.warmup_steps
    gamma = FLAGS.gamma
    n_step = FLAGS.n_step
    time_scale = FLAGS.time_scale
    use_hrnn = FLAGS.use_hrnn
    use_rmc = FLAGS.use_rmc
    use_amc = FLAGS.use_amc
    use_beta = FLAGS.use_beta
    use_retrace = FLAGS.use_retrace
    use_reward_prediction = FLAGS.use_reward_prediction
    after_rnn = FLAGS.after_rnn
    use_pixel_control = FLAGS.use_pixel_control
    pq_kl_coef = FLAGS.pq_kl_coef
    p_kl_coef = FLAGS.p_kl_coef
    pi_coef = FLAGS.pi_coef
    vf_coef = FLAGS.vf_coef
    ent_coef = FLAGS.ent_coef
    qf_coef = FLAGS.qf_coef
    ppo_clip = FLAGS.ppo_clip
    vf_clip = FLAGS.vf_clip

    global_step_float = tf.cast(global_step, tf.float32)

    lr = tf.train.polynomial_decay(
        init_lr, global_step,
        FLAGS.total_environment_frames // (FLAGS.batch_size * FLAGS.seqlen),
        init_lr / 10.)
    is_warmup = tf.cast(global_step_float < warmup_steps, tf.float32)
    lr = is_warmup * global_step_float / warmup_steps * init_lr + (
        1.0 - is_warmup) * (init_lr * (1.0 - decay) + lr * decay)

    ent_coef = tf.train.polynomial_decay(
        ent_coef, global_step,
        FLAGS.total_environment_frames // (FLAGS.batch_size * FLAGS.seqlen),
        ent_coef / 10.)

    optimizer = tf.train.AdamOptimizer(lr)

    if FLAGS.zero_init:
        pre["state_in"] = tf.zeros_like(pre["state_in"])

    if use_hrnn:
        rnn = TmpHierRNN(time_scale,
                         64,
                         4,
                         2,
                         8,
                         'lstm',
                         'rmc',
                         return_sequences=True,
                         return_state=True,
                         name="hrnn")
    elif use_rmc:
        rnn = RMCRNN(64,
                     4,
                     64,
                     return_sequences=True,
                     return_state=True,
                     name="rmc")
    elif use_amc:
        rnn = AMCRNN(64,
                     4,
                     64,
                     return_sequences=True,
                     return_state=True,
                     name="amc")
    else:
        rnn = tf.compat.v1.keras.layers.CuDNNLSTM(256,
                                                  return_sequences=True,
                                                  return_state=True,
                                                  name="lstm")

    pre_model = Model(act_space, gamma, n_step, rnn, use_hrnn, use_rmc,
                      use_amc, use_beta, use_reward_prediction, after_rnn,
                      use_pixel_control, False, **pre)

    post["state_in"] = tf.stop_gradient(pre_model.state_out)

    post_model = Model(act_space, gamma, n_step, rnn, use_hrnn, use_rmc,
                       use_amc, use_beta, use_reward_prediction, after_rnn,
                       use_pixel_control, True, **post)

    tf.summary.scalar("adv_mean", post_model.adv_mean)
    tf.summary.scalar("adv_std", post_model.adv_std)

    if use_retrace:
        q_loss = mse(post_model.qa, post_model.retrace_qs)
    else:
        q_loss = mse(post_model.qa, post_model.n_step_qs)
    # q_loss = mse(
    #     post_model.qa,
    #     tf.stop_gradient(
    #         post_model.current_value[:, :-n_step] + post_model.adv))
    q_loss = tf.reduce_mean(q_loss * post_model.mask[:, :-n_step] *
                            batch_weights[:, None]) + 3.0 * tf.reduce_mean(
                                q_loss * post_model.mask[:, :-n_step] *
                                (1.0 - batch_weights[:, None]))

    ent_loss = tf.reduce_mean(
        entropy_from_logits(post_model.current_act_logits) * post_model.mask *
        batch_weights[:, None])

    losses = dPPOcC(
        act=post_model.a[:, 1:1 - n_step],
        policy_logits=post_model.current_act_logits[:, :-n_step, :],
        behavior_logits=post_model.behavior_logits[:, :-n_step, :],
        advantage=post_model.adv,
        policy_clip=ppo_clip,
        vf=post_model.current_value[:, :-n_step],
        vf_target=post_model.vs,
        value_clip=vf_clip,
        old_vf=post_model.old_vf[:, :-n_step])
    p_loss = tf.reduce_mean(losses.p_loss * post_model.mask[:, :-n_step] *
                            batch_weights[:, None])
    v_loss = tf.reduce_mean(losses.v_loss * post_model.mask[:, :-n_step] *
                            batch_weights[:, None])

    add_loss = 0.0
    if use_hrnn:
        pq_kl_loss = KL_from_gaussians(post_model.q_mus, post_model.q_sigmas,
                                       post_model.p_mus, post_model.p_sigmas)
        pq_kl_loss = tf.reduce_mean(pq_kl_loss * post_model.mask)

        p_kl_loss = KL_from_gaussians(post_model.p_mus, post_model.p_sigmas,
                                      tf.zeros_like(post_model.p_mus),
                                      0.01 * tf.ones_like(post_model.p_sigmas))
        p_kl_loss = tf.reduce_mean(p_kl_loss * post_model.mask)

        with tf.name_scope("hierarchy_loss"):
            tf.summary.scalar("kl_div_pq", pq_kl_loss)
            tf.summary.scalar("kl_div_prior", p_kl_loss)
        add_loss += pq_kl_coef * pq_kl_loss
        add_loss += p_kl_coef * p_kl_loss

    if use_reward_prediction:
        r_loss = tf.reduce_mean(
            mse(post_model.reward_prediction, post_model.r[:, 1:1 - n_step]) *
            post_model.mask[:, :-n_step])
        tf.summary.scalar("r_loss", r_loss)
        add_loss += r_loss

    if use_pixel_control:
        s = tf.cast(post_model.s[:, :1 - n_step, :, :, :], tf.float32) / 255.0
        target = s[:, 1:, :, :, :] - s[:, :-1, :, :, :]
        shape = get_shape(target)
        target = tf.reshape(
            target,
            (shape[0], shape[1], 4, shape[2] // 4, 4, shape[3] // 4, shape[4]))
        target = tf.reduce_mean(target, axis=(2, 4))
        pixel_loss = tf.reduce_mean(
            mse(post_model.pixel_control, target) *
            post_model.mask[:, :-n_step, None, None, None])
        with tf.name_scope("control_loss"):
            tf.summary.scalar("pixel_control_loss", pixel_loss)
        add_loss += pixel_loss

    loss = (qf_coef * q_loss + vf_coef * v_loss + pi_coef * p_loss -
            ent_coef * ent_loss + add_loss)

    abs_td = post_model.mask[:, :-n_step] * tf.abs(
        post_model.qa - post_model.n_step_rewards +
        gamma**n_step * post_model.qa1)
    avg_p = tf.reduce_mean(abs_td, axis=-1)
    max_p = tf.reduce_max(abs_td, axis=-1)
    priority = 0.9 * max_p + 0.1 * avg_p

    beta = tf.train.polynomial_decay(
        0.4, global_step,
        FLAGS.total_environment_frames // (FLAGS.batch_size * FLAGS.seqlen),
        1.0)

    train_op = miniOp(optimizer, loss, FLAGS.grad_clip)

    if FLAGS.smooth_update:
        init_target_op = assignOp(1.0, {"q": "q_target"})
        target_op = assignOp(1.0 / FLAGS.target_update, {"q": "q_target"})
    else:
        init_target_op = assignOp(1.0, {"q": "q_target"})
        target_op = tf.no_op()

    dependency = [train_op, target_op]

    new_frames = tf.reduce_sum(post["mask"])

    with tf.control_dependencies(dependency):
        num_frames_and_train = tf.assign_add(num_frames, new_frames)
        global_step_and_train = tf.assign_add(global_step, 1)

    tf.summary.scalar("learning_rate", lr)
    tf.summary.scalar("pi_loss", p_loss)
    tf.summary.scalar("q_loss", q_loss)
    tf.summary.scalar("v_loss", v_loss)
    tf.summary.scalar("ent_loss", ent_loss)
    tf.summary.scalar("all_loss", loss)

    return num_frames_and_train, global_step_and_train, init_target_op, priority, beta
コード例 #6
0
def run():
    CKPT_DIR = "/".join(os.getcwd().split("/")[:-2]) + "/ckpt/ppo16"

    frames = 1
    action_repeats = [1]
    MAX_STEPS = 320000
    act_space = 12
    use_rmc = False
    use_hrmc = True
    use_reward_prediction = False
    use_pixel_control = False
    after_rnn = False

    sess = tf.Session()

    phs = dict()

    phs["s"] = tf.placeholder(dtype=tf.float32,
                              shape=[None, None, 84, 84, frames])
    phs["prev_a"] = tf.placeholder(dtype=tf.int32, shape=[None, None])
    phs["prev_r"] = tf.placeholder(dtype=tf.float32, shape=[None, None])
    # phs["a"] = tf.placeholder(dtype=tf.int32, shape=[None, None])
    # phs["a_logits"] = tf.placeholder(dtype=tf.float32, shape=[None, None, act_space])
    # phs["adv"] = tf.placeholder(dtype=tf.float32, shape=[None, None])
    phs["v_cur"] = tf.placeholder(dtype=tf.float32, shape=[None, None])
    # phs["slots"] = tf.placeholder(dtype=tf.float32, shape=[None, None])

    if use_hrmc:
        state_size = 1 + 2 * (4 + 4) * 4 * 64
        phs["state_in"] = tf.placeholder(dtype=tf.float32,
                                         shape=[None, state_size])
        lstm = TmpHierRMCRNN(4,
                             64,
                             4,
                             4,
                             return_sequences=True,
                             return_state=True,
                             name="hrmcrnn")
    elif use_rmc:
        state_size = 64 * 4 * 4
        phs["state_in"] = tf.placeholder(dtype=tf.float32,
                                         shape=[None, 64 * 4 * 4])
        lstm = RMCRNN(64,
                      4,
                      4,
                      return_sequences=True,
                      return_state=True,
                      name="rmcrnn")
    else:
        state_size = 256 * 2
        phs["state_in"] = tf.placeholder(dtype=tf.float32,
                                         shape=[None, 256 * 2])
        lstm = tf.compat.v1.keras.layers.LSTM(256,
                                              return_sequences=True,
                                              return_state=True,
                                              name="lstm")

    model = Model(act_space, lstm, use_rmc, use_hrmc, use_reward_prediction,
                  after_rnn, use_pixel_control, "agent", **phs)

    saver = tf.train.Saver(max_to_keep=None, keep_checkpoint_every_n_hours=6)

    ckpt = tf.train.get_checkpoint_state(CKPT_DIR)
    saver.restore(
        sess, os.path.join(CKPT_DIR,
                           ckpt.model_checkpoint_path.split("/")[-1]))

    envs = []
    games = [
        "SuperMarioBros-1-1-v0", "SuperMarioBros-2-1-v0",
        "SuperMarioBros-4-1-v0", "SuperMarioBros-5-1-v0"
    ]
    # games = ["SuperMarioBros-2-3-v0",
    #          "SuperMarioBros-5-2-v0",
    #          "SuperMarioBros-7-1-v0",
    #          "SuperMarioBros-7-3-v0",
    #          "SuperMarioBros-8-1-v0",
    #          "SuperMarioBros-8-2-v0",
    #          "SuperMarioBros-8-3-v0"]
    games = [
        "SuperMarioBros-%d-%d-v0" % (i, j) for i in [6] for j in [1, 2, 3, 4]
    ]
    for i in range(len(games)):
        env = Env(12, action_repeats, frames, state_size, games[i])
        envs.append(env)

    while True:
        for i in range(MAX_STEPS):
            _s_t_batch = [env.get_state()[None, :, :, :] for env in envs]
            _a_t_batch = [[env.get_act()] for env in envs]
            _r_t_batch = [[env.r[-1]] for env in envs]
            _state_in_batch = [env.get_state_in() for env in envs]

            _a_t_new, _a_t_logits, _v_cur, _state_out_batch = sess.run(
                [
                    model.get_current_act(),
                    model.get_current_act_logits(), model.current_value,
                    model.state_out
                ],
                feed_dict={
                    model.s_t: _s_t_batch,
                    model.previous_actions: _a_t_batch,
                    model.prev_r: _r_t_batch,
                    model.state_in: _state_in_batch
                })

            # _a_t_new = np.argmax(_a_t_logits, axis=-1)

            [
                env.step(_a_t_new[i][0], _a_t_logits[i][0],
                         _state_out_batch[i]) for (i, env) in enumerate(envs)
            ]

            [env.update_v(_v_cur[i][0]) for (i, env) in enumerate(envs)]

            force = False
            if i == MAX_STEPS - 1:
                force = True

            [env.reset(force) for env in envs]
コード例 #7
0
ファイル: Server_PPO.py プロジェクト: hybug/test_ppo
def run(**kwargs):
    tmplimit = 512
    lifelong = None

    server_id = kwargs.get("server_id", 0)

    address = "ipc:///tmp/databack%d" % server_id

    SCRIPT_DIR = kwargs.get("SCRIPT_DIR")
    BASE_DIR = kwargs.get("BASE_DIR")
    CKPT_DIR = kwargs.get("CKPT_DIR")
    DATA_DIR = kwargs.get("DATA_DIR")

    logging.basicConfig(filename=os.path.join(BASE_DIR, "Serverlog"),
                        level="INFO")

    frames = kwargs.get("frames", 1)
    workers = kwargs.get("workers", 16)
    parallel = kwargs.get("worker_parallel", 4)
    MAX_STEPS = kwargs.get("max_steps", 3200)
    seqlen = kwargs.get("seqlen", 32)
    burn_in = kwargs.get("burn_in", 32)
    act_space = kwargs.get("act_space", 7)
    use_rmc = kwargs.get("use_rmc", 0)
    use_hrmc = kwargs.get("use_hrmc", 0)
    use_reward_prediction = kwargs.get("use_reward_prediction", 0)
    use_pixel_control = kwargs.get("use_pixel_control", 0)

    games = [
        "SuperMarioBros-%d-%d-v0" % (i, j) for i in range(1, 9)
        for j in range(1, 5)
    ]

    sess = tf.Session()

    phs = dict()

    phs["s"] = tf.placeholder(dtype=tf.float32,
                              shape=[None, None, 84, 84, frames])
    phs["prev_a"] = tf.placeholder(dtype=tf.int32, shape=[None, None])
    phs["a"] = tf.placeholder(dtype=tf.int32, shape=[None, None])
    phs["a_logits"] = tf.placeholder(dtype=tf.float32,
                                     shape=[None, None, act_space])
    phs["r"] = tf.placeholder(dtype=tf.float32, shape=[None, None])
    phs["prev_r"] = tf.placeholder(dtype=tf.float32, shape=[None, None])
    phs["adv"] = tf.placeholder(dtype=tf.float32, shape=[None, None])
    phs["v_cur"] = tf.placeholder(dtype=tf.float32, shape=[None, None])
    phs["slots"] = tf.placeholder(dtype=tf.float32, shape=[None, None])

    if use_hrmc:
        state_size = 1 + 2 * (4 + 4) * 4 * 64
        phs["state_in"] = tf.placeholder(dtype=tf.float32,
                                         shape=[None, state_size])
        lstm = TmpHierRMCRNN(4,
                             64,
                             4,
                             4,
                             4,
                             return_sequences=True,
                             return_state=True,
                             name="hrmcrnn")
    elif use_rmc:
        state_size = 64 * 4 * 4
        phs["state_in"] = tf.placeholder(dtype=tf.float32,
                                         shape=[None, 64 * 4 * 4])
        lstm = RMCRNN(64,
                      4,
                      4,
                      return_sequences=True,
                      return_state=True,
                      name="rmcrnn")
    else:
        state_size = 256 * 2
        phs["state_in"] = tf.placeholder(dtype=tf.float32,
                                         shape=[None, 256 * 2])
        lstm = tf.compat.v1.keras.layers.LSTM(256,
                                              return_sequences=True,
                                              return_state=True,
                                              name="lstm")

    model = Model(act_space, lstm, use_rmc, use_hrmc, use_reward_prediction,
                  use_pixel_control, "agent", **phs)

    saver = tf.train.Saver(max_to_keep=None, keep_checkpoint_every_n_hours=6)

    ckpt = tf.train.get_checkpoint_state(CKPT_DIR)
    ckpt_path = None
    if ckpt and ckpt.model_checkpoint_path:
        saver.restore(sess, ckpt.model_checkpoint_path)
    else:
        sess.run(tf.global_variables_initializer())

    context = zmq.Context()
    frontend = context.socket(zmq.ROUTER)
    frontend.bind(address)

    queue_ins = OrderedDict()
    # queue_out = Queue(maxsize=3 * tmplimit)
    for i in range(workers):
        queue_in = Queue()
        worker_id = i
        queue_ins[worker_id] = queue_in

        worker = Process(target=Worker_Q,
                         args=(queue_in, address, parallel, BASE_DIR, DATA_DIR,
                               3 * tmplimit, server_id, worker_id,
                               "\t".join(games), frames, seqlen, burn_in,
                               act_space, state_size))
        worker.daemon = True
        worker.start()

    while True:
        ckpt = tf.train.get_checkpoint_state(CKPT_DIR)
        if ckpt is not None:
            new_ckpt_path = ckpt.model_checkpoint_path
            if new_ckpt_path != ckpt_path:
                ckpt_path = new_ckpt_path
                saver.restore(sess, ckpt_path)

        fd = {model.s_t: [], model.previous_actions: [], model.state_in: []}

        idx, msg = frontend.recv_multipart(copy=False)
        worker_id, databack = unpack(msg)
        s, a, r, state_in = databack
        fd[model.s_t] = s
        fd[model.previous_actions] = a
        fd[phs["prev_r"]] = r
        fd[model.state_in] = state_in

        _a_t_new, _a_t_logits, _v_cur, _state_out_batch = sess.run(
            [
                model.get_current_act(),
                model.get_current_act_logits(), model.current_value,
                model.state_out
            ],
            feed_dict=fd)

        dataforward = (_a_t_new, _a_t_logits, _state_out_batch, _v_cur)
        queue_ins[worker_id].put(dataforward)