def inclination(self, data_i):
        """
        標準偏差の傾きを調べる。ボラティリティの広がりをパターンに分ける
        :param data_i: int
        :return: int: 定数、傾きのパターン
        """
        pre_data = self._data.loc[data_i - self._last_data_num + 1:data_i,
                                  'sigma'].values
        min_price = np.amin(pre_data)
        t = pre_data - np.full_like(a=pre_data, fill_value=min_price)
        x = np.arange(start=0,
                      step=self._inclination_alpha,
                      stop=self._inclination_alpha * len(t))
        inclination = functions.linear_regression(
            x=x, t=t, basic_function=functions.Polynomial(dim=2))[1]

        if self.POSITIVE_INCLINATION < inclination:
            inclination_pattern = self.HYPER_EXPANSION
        elif (self.POSITIVE_MIDDLE_INCLINATION <
              inclination) and (inclination <= self.POSITIVE_INCLINATION):
            inclination_pattern = self.EXPANSION
        elif (self.NEGATIVE_MIDDLE_INCLINATION <= inclination) and (
                inclination <= self.POSITIVE_MIDDLE_INCLINATION):
            inclination_pattern = self.FLAT
        elif (self.NEGATIVE_INCLINATION <= inclination) and (
                inclination < self.NEGATIVE_MIDDLE_INCLINATION):
            inclination_pattern = self.SQUEEZE
        elif inclination < self.NEGATIVE_INCLINATION:
            inclination_pattern = self.HYPER_SQUEEZE
        else:
            inclination_pattern = None
        return inclination_pattern
コード例 #2
0
    def __inclination(self):
        min_sigma = np.amin(self.__recent_sigma)
        # 最小値との差分だけの行列を作る
        t = self.__recent_sigma - np.full_like(a=self.__recent_sigma,
                                               fill_value=min_sigma)
        t = t * 1000
        x = np.arange(start=0,
                      step=self.__inclination_alpha,
                      stop=self.__inclination_alpha * len(t))
        # 直線(1次多項式)の線形回帰
        # その傾きを取り出す
        inclination = linear_regression(x=x,
                                        t=t,
                                        basic_function=Polynomial(dim=2))[1]

        if self.POSITIVE_INCLINATION < inclination:
            inclination_pattern = self.HYPER_EXPANSION
        elif (self.POSITIVE_MIDDLE_INCLINATION <
              inclination) and (inclination <= self.POSITIVE_INCLINATION):
            inclination_pattern = self.EXPANSION
        elif (self.NEGATIVE_MIDDLE_INCLINATION <= inclination) and (
                inclination <= self.POSITIVE_MIDDLE_INCLINATION):
            inclination_pattern = self.FLAT
        elif (self.NEGATIVE_INCLINATION <= inclination) and (
                inclination < self.NEGATIVE_MIDDLE_INCLINATION):
            inclination_pattern = self.SQUEEZE
        elif inclination < self.NEGATIVE_INCLINATION:
            inclination_pattern = self.HYPER_SQUEEZE
        else:
            raise TypeError('inclination is None')
        return inclination_pattern
コード例 #3
0
 def test_linear_regression(self):
     x = np.asarray([0, 20, 40])
     t = np.asarray([100, 120, 140])
     polynomial = functions.Polynomial(dim=2)
     w = functions.linear_regression(x=x, t=t, basic_function=polynomial)
     self.assertEqual(100, round(w[0]))
     self.assertEqual(1, round(w[1]))
     print(round(w[0]), w[0])
     print(round(w[1]), w[1])
コード例 #4
0
 def inclination(self, data_i):
     """
     標準偏差の傾きを調べる。ボラティリティの広がりをパターンに分ける
     :param data_i: 
     :return: 
     """
     pre_data = self.__data.loc[data_i - self.__stock_term + 1:data_i,
                                self.__target].values
     min_price = np.amin(pre_data)
     t = pre_data - np.full_like(a=pre_data, fill_value=min_price)
     t = t * 1000
     x = np.arange(start=0,
                   step=self.__inclination_alpha,
                   stop=self.__inclination_alpha * len(t))
     inclination = functions.linear_regression(
         x=x, t=t, basic_function=functions.Polynomial(dim=2))[1]
     self.__inclination_list.append(inclination)
     self.inclination_pattern(inclination=inclination)