def __init__(self, mac, scheme, logger, args): self.args = args self.mac = mac self.logger = logger self.params = list(mac.parameters()) self.last_target_update_episode = 0 self.mixer = None if args.mixer is not None: if args.mixer == "vdn": self.mixer = VDNMixer() elif args.mixer == "qmix": self.mixer = QMixer(args) elif args.mixer == "graphmix": self.mixer = GraphMixer(args) else: raise ValueError(f"Mixer {args.mixer} not recognized.") self.params += list(self.mixer.parameters()) self.target_mixer = copy.deepcopy(self.mixer) #self.optimiser = RMSprop(params=self.params, lr=args.lr, alpha=args.optim_alpha, eps=args.optim_eps) self.optimizer = Adam(params=self.params, lr=args.lr) self.target_mac = copy.deepcopy(mac) self.log_stats_t = -self.args.learner_log_interval - 1
class QLearner: def __init__(self, mac, scheme, logger, args): self.args = args self.mac = mac self.logger = logger self.params = list(mac.parameters()) self.last_target_update_episode = 0 self.mixer = None if args.mixer is not None: if args.mixer == "vdn": self.mixer = VDNMixer() elif args.mixer == "qmix": self.mixer = QMixer(args) elif args.mixer == "graphmix": self.mixer = GraphMixer(args) else: raise ValueError(f"Mixer {args.mixer} not recognized.") self.params += list(self.mixer.parameters()) self.target_mixer = copy.deepcopy(self.mixer) #self.optimiser = RMSprop(params=self.params, lr=args.lr, alpha=args.optim_alpha, eps=args.optim_eps) self.optimizer = Adam(params=self.params, lr=args.lr) self.target_mac = copy.deepcopy(mac) self.log_stats_t = -self.args.learner_log_interval - 1 #Main training part of q-learner def train(self, batch: EpisodeBatch, t_env: int, episode_num: int): # Get the relevant quantities rewards = batch["reward"][:, :-1] actions = batch["actions"][:, :-1] terminated = batch["terminated"][:, :-1].float() mask = batch["filled"][:, :-1].float() mask[:, 1:] = mask[:, 1:] * (1 - terminated[:, :-1]) avail_actions = batch["avail_actions"] # Calculate estimated Q-Values mac_out = [] hidden_states = [] self.mac.init_hidden(batch.batch_size) for t in range(batch.max_seq_length): agent_outs = self.mac.forward(batch, t=t) mac_out.append(agent_outs) hidden_states.append( self.mac.hidden_states.view(batch.batch_size, self.args.n_agents, -1)) mac_out = th.stack(mac_out, dim=1) # Concat over time hidden_states = th.stack(hidden_states, dim=1) # Pick the Q-Values for the actions taken by each agent chosen_action_qvals = th.gather(mac_out[:, :-1], dim=3, index=actions).squeeze( 3) # Remove the last dim # Calculate the Q-Values necessary for the target target_mac_out = [] target_hidden_states = [] self.target_mac.init_hidden(batch.batch_size) for t in range(batch.max_seq_length): target_agent_outs = self.target_mac.forward(batch, t=t) target_mac_out.append(target_agent_outs) target_hidden_states.append( self.target_mac.hidden_states.view(batch.batch_size, self.args.n_agents, -1)) # We don't need the first timesteps Q-Value estimate for calculating targets target_mac_out = th.stack(target_mac_out[1:], dim=1) # Concat across time target_hidden_states = th.stack(target_hidden_states[1:], dim=1) # Mask out unavailable actions target_mac_out[avail_actions[:, 1:] == 0] = -9999999 # Max over target Q-Values if self.args.double_q: # Get actions that maximise live Q (for double q-learning) mac_out_detach = mac_out.clone().detach() mac_out_detach[avail_actions == 0] = -9999999 cur_max_actions = mac_out_detach[:, 1:].max(dim=3, keepdim=True)[1] target_max_qvals = th.gather(target_mac_out, 3, cur_max_actions).squeeze(3) else: target_max_qvals = target_mac_out.max(dim=3)[0] if self.args.mixer == 'graphmix': # Mix chosen_action_qvals_peragent = chosen_action_qvals.clone() target_max_qvals_peragent = target_max_qvals.detach() chosen_action_qvals, local_rewards, alive_agents_mask = self.mixer( chosen_action_qvals, batch["state"][:, :-1], agent_obs=batch["obs"][:, :-1], team_rewards=rewards, hidden_states=hidden_states[:, :-1]) target_max_qvals = self.target_mixer( target_max_qvals, batch["state"][:, 1:], agent_obs=batch["obs"][:, 1:], hidden_states=target_hidden_states)[0] ## Global loss # Calculate 1-step Q-Learning targets targets = rewards + self.args.gamma * ( 1 - terminated) * target_max_qvals # Td-error td_error = (chosen_action_qvals - targets.detach()) mask = mask.expand_as(td_error) # 0-out the targets that came from padded data masked_td_error = td_error * mask # Normal L2 loss, take mean over actual data global_loss = (masked_td_error**2).sum() / mask.sum() ## Local losses # Calculate 1-step Q-Learning targets local_targets = local_rewards + self.args.gamma * (1 - terminated).repeat(1, 1, self.args.n_agents) \ * target_max_qvals_peragent # Td-error local_td_error = (chosen_action_qvals_peragent - local_targets) local_mask = mask.repeat( 1, 1, self.args.n_agents) * alive_agents_mask.float() # 0-out the targets that came from padded data local_masked_td_error = local_td_error * local_mask # Normal L2 loss, take mean over actual data local_loss = (local_masked_td_error**2).sum() / mask.sum() # total loss lambda_local = self.args.lambda_local loss = global_loss + lambda_local * local_loss else: # If the mixer is not graphmix # Mix if self.mixer is not None: chosen_action_qvals = self.mixer(chosen_action_qvals, batch["state"][:, :-1]) target_max_qvals = self.target_mixer(target_max_qvals, batch["state"][:, 1:]) # Calculate 1-step Q-Learning targets targets = rewards + self.args.gamma * ( 1 - terminated) * target_max_qvals # Td-error td_error = (chosen_action_qvals - targets.detach()) mask = mask.expand_as(td_error) # 0-out the targets that came from padded data masked_td_error = td_error * mask # Normal L2 loss, take mean over actual data loss = (masked_td_error**2).sum() / mask.sum() # Optimize self.optimizer.zero_grad() loss.backward() grad_norm = th.nn.utils.clip_grad_norm_(self.params, self.args.grad_norm_clip) self.optimizer.step() if (episode_num - self.last_target_update_episode ) / self.args.target_update_interval >= 1.0: self._update_targets() self.last_target_update_episode = episode_num if t_env - self.log_stats_t >= self.args.learner_log_interval: self.logger.log_stat("loss", loss.item(), t_env) if self.args.mixer == 'graphmix': self.logger.log_stat("global_loss", global_loss.item(), t_env) self.logger.log_stat("local_loss", local_loss.item(), t_env) self.logger.log_stat("grad_norm", grad_norm, t_env) mask_elems = mask.sum().item() self.logger.log_stat( "td_error_abs", (masked_td_error.abs().sum().item() / mask_elems), t_env) self.logger.log_stat("q_taken_mean", (chosen_action_qvals * mask).sum().item() / (mask_elems * self.args.n_agents), t_env) self.logger.log_stat("target_mean", (targets * mask).sum().item() / (mask_elems * self.args.n_agents), t_env) self.log_stats_t = t_env def _update_targets(self): self.target_mac.load_state(self.mac) if self.mixer is not None: self.target_mixer.load_state_dict(self.mixer.state_dict()) self.logger.console_logger.info("Updated target network") def cuda(self): self.mac.cuda() self.target_mac.cuda() if self.mixer is not None: self.mixer.cuda() self.target_mixer.cuda() def save_models(self, path): self.mac.save_models(path) if self.mixer is not None: th.save(self.mixer.state_dict(), f"{path}/mixer.th") th.save(self.optimizer.state_dict(), f"{path}/opt.th") def load_models(self, path): self.mac.load_models(path) self.target_mac.load_models(path) if self.mixer is not None: self.mixer.load_state_dict( th.load(f"{path}/mixer.th", map_location=lambda storage, loc: storage)) self.optimizer.load_state_dict( th.load(f"{path}/opt.th", map_location=lambda storage, loc: storage))
class QLearner: def __init__(self, mac, scheme, logger, args): self.args = args self.mac = mac self.logger = logger self.params = list(mac.parameters()) self.last_target_update_episode = 0 self.mixer = None if args.mixer is not None: if args.mixer == "vdn": self.mixer = VDNMixer() elif args.mixer == "qmix": self.mixer = QMixer(args) elif args.mixer == "graphmix": self.mixer = GraphMixer(args) else: raise ValueError("Mixer {} not recognised.".format(args.mixer)) self.params += list(self.mixer.parameters()) self.target_mixer = copy.deepcopy(self.mixer) self.optimiser = RMSprop(params=self.params, lr=args.lr, alpha=args.optim_alpha, eps=args.optim_eps) self.target_mac = copy.deepcopy(mac) self.log_stats_t = -self.args.learner_log_interval - 1 def train(self, batch: EpisodeBatch, t_env: int, episode_num: int): # 관련된 데이터를 가져온다. rewards = batch["reward"][:, :-1] actions = batch["actions"][:, :-1] terminated = batch["terminated"][:, :-1].float() mask = batch["filled"][:, :-1].float() mask[:, 1:] = mask[:, 1:] * (1 - terminated[:, :-1]) avail_actions = batch["avail_actions"] # Agent 개별의 Q값을 산출함 mac_out = [] hidden_states = [] self.mac.init_hidden(batch.batch_size) for t in range(batch.max_seq_length): agent_outs = self.mac.forward(batch, t=t) mac_out.append(agent_outs) hidden_states.append(self.mac.hidden_states.view(batch.batch_size, self.args.n_agents, -1)) mac_out = th.stack(mac_out, dim=1) # 시간순에 따라 Concat hidden_states = th.stack(hidden_states, dim=1) # Agent가 선택한 행동의 Q값을 뽑는다. chosen_action_qvals = th.gather(mac_out[:, :-1], dim=3, index=actions).squeeze(3) # Remove the last dim # Agent Target Network 의 개별 Q값을 산출함 target_mac_out = [] target_hidden_states = [] self.target_mac.init_hidden(batch.batch_size) for t in range(batch.max_seq_length): target_agent_outs = self.target_mac.forward(batch, t=t) target_mac_out.append(target_agent_outs) target_hidden_states.append(self.target_mac.hidden_states.view(batch.batch_size, self.args.n_agents, -1)) # target network는 next_state 기준 이므로 t=1부터 저장 target_mac_out = th.stack(target_mac_out[1:], dim=1) # Concat across time target_hidden_states = th.stack(target_hidden_states[1:], dim=1) # Mask out unavailable actions target_mac_out[avail_actions[:, 1:] == 0] = -9999999 if self.args.double_q: # Get actions that maximise live Q (for double q-learning) # Agent의 Q값 저장 mac_out_detach = mac_out.clone().detach() mac_out_detach[avail_actions == 0] = -9999999 # Agent의 next_state 기준의 최대 Q값의 Action 저장 cur_max_actions = mac_out_detach[:, 1:].max(dim=3, keepdim=True)[1] # 이 action 에 대한 Target Network Q값을 저장한다. # 실제 target_mac_out의 최댓값과 다를 수 있음 # 실제로 Agent가 선택한 행동의 대한 Q값을 가져오는 셈 target_max_qvals = th.gather(target_mac_out, 3, cur_max_actions).squeeze(3) else: target_max_qvals = target_mac_out.max(dim=3)[0] if self.args.mixer == 'graphmix': # Mix chosen_action_qvals_peragent = chosen_action_qvals.clone() target_max_qvals_peragent = target_max_qvals.detach() Q_total, local_rewards, alive_agents_mask = self.mixer(chosen_action_qvals, batch["state"][:, :-1], agent_obs=batch["obs"][:, :-1], team_rewards=rewards, hidden_states=hidden_states[:, :-1] ) target_Q_total = self.target_mixer(target_max_qvals, batch["state"][:, 1:], agent_obs=batch["obs"][:, 1:], hidden_states=target_hidden_states )[0] ## Global loss # Calculate 1-step Q-Learning targets targets = rewards + self.args.gamma * (1 - terminated) * target_Q_total # Td-error td_error = (Q_total - targets.detach()) mask = mask.expand_as(td_error) # 0-out the targets that came from padded data masked_td_error = td_error * mask # Normal L2 loss, take mean over actual data global_loss = (masked_td_error ** 2).sum() / mask.sum() ## Local losses # Calculate 1-step Q-Learning targets local_targets = local_rewards + self.args.gamma * (1 - terminated).repeat(1, 1, self.args.n_agents) \ * target_max_qvals_peragent # Td-error local_td_error = (chosen_action_qvals_peragent - local_targets) local_mask = mask.repeat(1, 1, self.args.n_agents) * alive_agents_mask.float() # 0-out the targets that came from padded data local_masked_td_error = local_td_error * local_mask # Normal L2 loss, take mean over actual data local_loss = (local_masked_td_error ** 2).sum() / mask.sum() # total loss lambda_local = self.args.lambda_local loss = global_loss + lambda_local * local_loss else: # Mix if self.mixer is not None: # Agent가 선택한 Q값과 state 정보를 넘겨 Q_total, target_Q_total 산출 Q_total = self.mixer(chosen_action_qvals, batch["state"][:, :-1]) target_Q_total = self.target_mixer(target_max_qvals, batch["state"][:, 1:]) else: Q_total = chosen_action_qvals target_Q_total = target_max_qvals # 1 step Q 러닝 수행 targets = rewards + self.args.gamma * (1 - terminated) * target_Q_total # Td-error td_error = (Q_total - targets.detach()) mask = mask.expand_as(td_error) # 0-out the targets that came from padded data masked_td_error = td_error * mask # Normal L2 loss, take mean over actual data loss = (masked_td_error ** 2).sum() / mask.sum() # Optimise self.optimiser.zero_grad() loss.backward() grad_norm = th.nn.utils.clip_grad_norm_(self.params, self.args.grad_norm_clip) self.optimiser.step() if (episode_num - self.last_target_update_episode) / self.args.target_update_interval >= 1.0: self._update_targets() self.last_target_update_episode = episode_num if t_env - self.log_stats_t >= self.args.learner_log_interval: self.logger.log_stat("loss", loss.item(), t_env) if self.args.mixer == 'graphmix': self.logger.log_stat("global_loss", global_loss.item(), t_env) self.logger.log_stat("local_loss", local_loss.item(), t_env) self.logger.log_stat("grad_norm", grad_norm, t_env) mask_elems = mask.sum().item() self.logger.log_stat("td_error_abs", (masked_td_error.abs().sum().item() / mask_elems), t_env) self.logger.log_stat("q_taken_mean", (Q_total * mask).sum().item() / (mask_elems * self.args.n_agents), t_env) self.logger.log_stat("target_mean", (targets * mask).sum().item() / (mask_elems * self.args.n_agents), t_env) self.log_stats_t = t_env def _update_targets(self): self.target_mac.load_state(self.mac) if self.mixer is not None: self.target_mixer.load_state_dict(self.mixer.state_dict()) self.logger.console_logger.info("Updated target network") def cuda(self): self.mac.cuda() self.target_mac.cuda() if self.mixer is not None: self.mixer.cuda() self.target_mixer.cuda() def save_models(self, path): self.mac.save_models(path) if self.mixer is not None: th.save(self.mixer.state_dict(), "{}/mixer.th".format(path)) th.save(self.optimiser.state_dict(), "{}/opt.th".format(path)) def load_models(self, path): self.mac.load_models(path) self.target_mac.load_models(path) if self.mixer is not None: self.mixer.load_state_dict(th.load("{}/mixer.th".format(path), map_location=lambda storage, loc: storage)) self.optimiser.load_state_dict(th.load("{}/opt.th".format(path), map_location=lambda storage, loc: storage))