def __init__(self, mac, scheme, logger, args): self.args = args self.mac = mac self.logger = logger self.params = list(mac.parameters()) self.last_target_update_episode = 0 self.mixer = None if args.mixer is not None: if args.mixer == "vdn": self.mixer = VDNMixer() elif args.mixer == "qmix": self.mixer = QMixer(args) elif args.mixer == "qatten": self.mixer = QattenMixer(args) else: raise ValueError("Mixer {} not recognised.".format(args.mixer)) self.params += list(self.mixer.parameters()) self.target_mixer = copy.deepcopy(self.mixer) self.optimiser = RMSprop(params=self.params, lr=args.lr, alpha=args.optim_alpha, eps=args.optim_eps) # a little wasteful to deepcopy (e.g. duplicates action selector), but should work for any MAC self.target_mac = copy.deepcopy(mac) self.log_stats_t = -self.args.learner_log_interval - 1
def __init__(self, mac, scheme, logger, args): self.args = args self.mac = mac # 控制器 self.logger = logger self.last_target_update_episode = 0 self.device = th.device('cuda' if args.use_cuda else 'cpu') self.params = list(mac.parameters()) if args.mixer == "qatten": self.mixer = QattenMixer(args) elif args.mixer == "vdn": self.mixer = VDNMixer() elif args.mixer == "qmix": self.mixer = Mixer(args) else: raise Exception("mixer error") self.target_mixer = copy.deepcopy(self.mixer) self.params += list(self.mixer.parameters()) print('Mixer的参数量为: ', end='') print(get_parameters_num(self.mixer.parameters())) if self.args.optimizer == 'adam': self.optimiser = Adam(params=self.params, lr=args.lr) else: self.optimiser = RMSprop(params=self.params, lr=args.lr, alpha=args.optim_alpha, eps=args.optim_eps) # 深度复制有点浪费(例如重复动作选择器),但对任何MAC都应该有效。 # self.target_mac = copy.deepcopy(mac) # 设置日志打印间隔 self.log_stats_t = -self.args.learner_log_interval - 1 self.train_t = 0
def __init__(self, mac, scheme, logger, args): self.args = args self.mac = mac self.logger = logger self.last_target_update_episode = 0 self.device = th.device('cuda' if args.use_cuda else 'cpu') self.params = list(mac.parameters()) if args.mixer == "qatten": self.mixer = QattenMixer(args) elif args.mixer == "vdn": self.mixer = VDNMixer() elif args.mixer == "qmix": self.mixer = Mixer(args) else: raise "mixer error" self.target_mixer = copy.deepcopy(self.mixer) self.params += list(self.mixer.parameters()) print('Mixer Size: ') print(get_parameters_num(self.mixer.parameters())) if self.args.optimizer == 'adam': self.optimiser = Adam(params=self.params, lr=args.lr, weight_decay=getattr(args, "weight_decay", 0)) else: self.optimiser = RMSprop(params=self.params, lr=args.lr, alpha=args.optim_alpha, eps=args.optim_eps) # a little wasteful to deepcopy (e.g. duplicates action selector), but should work for any MAC self.target_mac = copy.deepcopy(mac) self.log_stats_t = -self.args.learner_log_interval - 1 self.train_t = 0 # priority replay self.use_per = getattr(self.args, 'use_per', False) self.return_priority = getattr(self.args, "return_priority", False) if self.use_per: self.priority_max = float('-inf') self.priority_min = float('inf')
class QattenLearner: def __init__(self, mac, scheme, logger, args): self.args = args self.mac = mac self.logger = logger self.params = list(mac.parameters()) self.last_target_update_episode = 0 self.mixer = None if args.mixer is not None: if args.mixer == "vdn": self.mixer = VDNMixer() elif args.mixer == "qmix": self.mixer = QMixer(args) elif args.mixer == "qatten": self.mixer = QattenMixer(args) else: raise ValueError("Mixer {} not recognised.".format(args.mixer)) self.params += list(self.mixer.parameters()) self.target_mixer = copy.deepcopy(self.mixer) self.optimiser = RMSprop(params=self.params, lr=args.lr, alpha=args.optim_alpha, eps=args.optim_eps) # a little wasteful to deepcopy (e.g. duplicates action selector), but should work for any MAC self.target_mac = copy.deepcopy(mac) self.log_stats_t = -self.args.learner_log_interval - 1 def train(self, batch: EpisodeBatch, t_env: int, episode_num: int, show_demo=False, save_data=None): # Get the relevant quantities rewards = batch["reward"][:, :-1] actions = batch["actions"][:, :-1] terminated = batch["terminated"][:, :-1].float() mask = batch["filled"][:, :-1].float() mask[:, 1:] = mask[:, 1:] * (1 - terminated[:, :-1]) avail_actions = batch["avail_actions"] # Calculate estimated Q-Values mac_out = [] self.mac.init_hidden(batch.batch_size) for t in range(batch.max_seq_length): agent_outs = self.mac.forward(batch, t=t) mac_out.append(agent_outs) mac_out = th.stack(mac_out, dim=1) # Concat over time # Pick the Q-Values for the actions taken by each agent chosen_action_qvals = th.gather(mac_out[:, :-1], dim=3, index=actions).squeeze( 3) # Remove the last dim x_mac_out = mac_out.clone().detach() x_mac_out[avail_actions == 0] = -9999999 max_action_qvals, max_action_index = x_mac_out[:, :-1].max(dim=3) max_action_index = max_action_index.detach().unsqueeze(3) is_max_action = (max_action_index == actions).int().float() if show_demo: q_i_data = chosen_action_qvals.detach().cpu().numpy() q_data = (max_action_qvals - chosen_action_qvals).detach().cpu().numpy() # Calculate the Q-Values necessary for the target target_mac_out = [] self.target_mac.init_hidden(batch.batch_size) for t in range(batch.max_seq_length): target_agent_outs = self.target_mac.forward(batch, t=t) target_mac_out.append(target_agent_outs) # We don't need the first timesteps Q-Value estimate for calculating targets target_mac_out = th.stack(target_mac_out[1:], dim=1) # Concat across time # Mask out unavailable actions target_mac_out[avail_actions[:, 1:] == 0] = -9999999 # Max over target Q-Values if self.args.double_q: # Get actions that maximise live Q (for double q-learning) mac_out_detach = mac_out.clone().detach() mac_out_detach[avail_actions == 0] = -9999999 cur_max_actions = mac_out_detach[:, 1:].max(dim=3, keepdim=True)[1] target_max_qvals = th.gather(target_mac_out, 3, cur_max_actions).squeeze(3) else: target_max_qvals = target_mac_out.max(dim=3)[0] cur_max_actions = target_mac_out.max( dim=3, keepdim=True)[1] # get the indices # cur_max_actions: (episode_batch, episode_length - 1, agent_num, 1) target_next_actions = cur_max_actions.detach( ) # actions are also inputs for mixer network # Mix if self.mixer is not None: if self.mixer.name == 'qatten': chosen_action_qvals, q_attend_regs, head_entropies = self.mixer( chosen_action_qvals, batch["state"][:, :-1], actions) target_max_qvals, _, _ = self.target_mixer( target_max_qvals, batch["state"][:, 1:], target_next_actions) else: chosen_action_qvals = self.mixer(chosen_action_qvals, batch["state"][:, :-1]) target_max_qvals = self.target_mixer(target_max_qvals, batch["state"][:, 1:]) # Calculate 1-step Q-Learning targets targets = rewards + self.args.gamma * (1 - terminated) * target_max_qvals if show_demo: tot_q_data = chosen_action_qvals.detach().cpu().numpy() tot_target = targets.detach().cpu().numpy() print('action_pair_%d_%d' % (save_data[0], save_data[1]), np.squeeze(q_data[:, 0]), np.squeeze(q_i_data[:, 0]), np.squeeze(tot_q_data[:, 0]), np.squeeze(tot_target[:, 0])) self.logger.log_stat( 'action_pair_%d_%d' % (save_data[0], save_data[1]), np.squeeze(tot_q_data[:, 0]), t_env) return # Td-error td_error = (chosen_action_qvals - targets.detach()) mask = mask.expand_as(td_error) # 0-out the targets that came from padded data masked_td_error = td_error * mask # Normal L2 loss, take mean over actual data if self.mixer.name == 'qatten': loss = (masked_td_error**2).sum() / mask.sum() + q_attend_regs else: loss = (masked_td_error**2).sum() / mask.sum() masked_hit_prob = th.mean(is_max_action, dim=2) * mask hit_prob = masked_hit_prob.sum() / mask.sum() # Optimise self.optimiser.zero_grad() loss.backward() grad_norm = th.nn.utils.clip_grad_norm_(self.params, self.args.grad_norm_clip) self.optimiser.step() if (episode_num - self.last_target_update_episode ) / self.args.target_update_interval >= 1.0: self._update_targets() self.last_target_update_episode = episode_num if t_env - self.log_stats_t >= self.args.learner_log_interval: self.logger.log_stat("loss", loss.item(), t_env) self.logger.log_stat("hit_prob", hit_prob.item(), t_env) self.logger.log_stat("grad_norm", grad_norm, t_env) mask_elems = mask.sum().item() self.logger.log_stat( "td_error_abs", (masked_td_error.abs().sum().item() / mask_elems), t_env) self.logger.log_stat("q_taken_mean", (chosen_action_qvals * mask).sum().item() / (mask_elems * self.args.n_agents), t_env) self.logger.log_stat("target_mean", (targets * mask).sum().item() / (mask_elems * self.args.n_agents), t_env) if self.mixer.name == 'qatten': [ self.logger.log_stat('head_{}_entropy'.format(h_i), ent.item(), t_env) for h_i, ent in enumerate(head_entropies) ] self.log_stats_t = t_env def _update_targets(self): self.target_mac.load_state(self.mac) if self.mixer is not None: self.target_mixer.load_state_dict(self.mixer.state_dict()) self.logger.console_logger.info("Updated target network") def cuda(self): self.mac.cuda() self.target_mac.cuda() if self.mixer is not None: self.mixer.cuda() self.target_mixer.cuda() def save_models(self, path): self.mac.save_models(path) if self.mixer is not None: th.save(self.mixer.state_dict(), "{}/mixer.th".format(path)) th.save(self.optimiser.state_dict(), "{}/opt.th".format(path)) def load_models(self, path): self.mac.load_models(path) # Not quite right but I don't want to save target networks self.target_mac.load_models(path) if self.mixer is not None: self.mixer.load_state_dict( th.load("{}/mixer.th".format(path), map_location=lambda storage, loc: storage)) self.optimiser.load_state_dict( th.load("{}/opt.th".format(path), map_location=lambda storage, loc: storage))