コード例 #1
0
def main(_argv):
    # init
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
    os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu

    logger = tf.get_logger()
    logger.disabled = True
    logger.setLevel(logging.FATAL)
    set_memory_growth()

    cfg = load_yaml(FLAGS.cfg_path)

    # load dataset
    test_dataset = load_cifar10_dataset(
        cfg['val_batch_size'], split='test', shuffle=False,
        drop_remainder=False, using_crop=False, using_flip=False,
        using_cutout=False)


    # define network
    # TODO : change cfg
    for num_arch in range(50):
        model = CifarModel(cfg, training=False)
        model.summary(line_length=80)
        print("param size = {:f}MB".format(count_parameters_in_MB(model)))

        # load checkpoint
        checkpoint_path = './checkpoints/' + cfg['sub_name'] + '/best.ckpt'
        try:
            model.load_weights('./checkpoints/' + cfg['sub_name'] + '/best.ckpt')
            print("[*] load ckpt from {}.".format(checkpoint_path))
        except:
            print("[*] Cannot find ckpt from {}.".format(checkpoint_path))
            exit()

        # inference
        top1 = AvgrageMeter()
        top5 = AvgrageMeter()
        for step, (inputs, labels) in enumerate(test_dataset):
            # run model
            logits = model(inputs)

            # cacludate top1, top5 acc
            prec1, prec5 = accuracy(logits.numpy(), labels.numpy(), topk=(1, 5))
            n = inputs.shape[0]
            top1.update(prec1, n)
            top5.update(prec5, n)

            print(" {:03d}: top1 {:f}, top5 {:f}".format(step, top1.avg, top5.avg))

        print("Test Acc: top1 {:.2f}%, top5 {:.2f}%".format(top1.avg, top5.avg))
コード例 #2
0
def main(_):
    # init
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
    os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu

    logger = tf.get_logger()
    logger.disabled = True
    logger.setLevel(logging.FATAL)
    set_memory_growth()

    cfg = load_yaml(FLAGS.cfg_path)

    # define training step function
    @tf.function
    def train_step(inputs, labels, drop_path_prob):
        with tf.GradientTape() as tape:
            logits, logits_aux = model((inputs, drop_path_prob), training=True)

            losses = {}
            losses['reg'] = tf.reduce_sum(model.losses)
            losses['ce'] = criterion(labels, logits)
            losses['ce_auxiliary'] = \
                cfg['auxiliary_weight'] * criterion(labels, logits_aux)
            total_loss = tf.add_n([l for l in losses.values()])

        grads = tape.gradient(total_loss, model.trainable_variables)
        grads = [(tf.clip_by_norm(grad, cfg['grad_clip'])) for grad in grads]
        optimizer.apply_gradients(zip(grads, model.trainable_variables))

        return logits, total_loss, losses

    # Used to store the final accuracy for every arch
    final_acc = pd.DataFrame(data=None, columns=['arch_name', 'acc'])

    loop_num = 50

    if Debug:
        # debugpy.wait_for_client()
        loop_num = 1
    # define network
    for arch_num in range(loop_num):
        # read the arch
        arch = str(f"{cfg['sub_name']}_{arch_num}")
        cfg['arch'] = arch

        model = CifarModel(cfg, training=True, file_name=FLAGS.file_name)
        if Debug:
            model.summary(line_length=80)
            print("param size = {:f}MB".format(count_parameters_in_MB(model)))

        # load dataset
        train_dataset = load_cifar10_dataset(
            cfg['batch_size'],
            split='train',
            shuffle=True,
            drop_remainder=True,
            using_normalize=cfg['using_normalize'],
            using_crop=cfg['using_crop'],
            using_flip=cfg['using_flip'],
            using_cutout=cfg['using_cutout'],
            cutout_length=cfg['cutout_length'])
        val_dataset = load_cifar10_dataset(
            cfg['val_batch_size'],
            split='test',
            shuffle=False,
            drop_remainder=False,
            using_normalize=cfg['using_normalize'],
            using_crop=False,
            using_flip=False,
            using_cutout=False)

        # define optimizer
        steps_per_epoch = cfg['dataset_len'] // cfg['batch_size']
        learning_rate = CosineAnnealingLR(initial_learning_rate=cfg['init_lr'],
                                          t_period=cfg['epoch'] *
                                          steps_per_epoch,
                                          lr_min=cfg['lr_min'])
        optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate,
                                            momentum=cfg['momentum'])

        # define losses function
        criterion = CrossEntropyLoss()

        # load checkpoint
        checkpoint_dir = './checkpoints/' + arch
        checkpoint = tf.train.Checkpoint(step=tf.Variable(0, name='step'),
                                         optimizer=optimizer,
                                         model=model)
        manager = tf.train.CheckpointManager(checkpoint=checkpoint,
                                             directory=checkpoint_dir,
                                             max_to_keep=3)
        if manager.latest_checkpoint:
            checkpoint.restore(manager.latest_checkpoint)
            print('[*] load ckpt from {} at step {}.'.format(
                manager.latest_checkpoint, checkpoint.step.numpy()))
        else:
            print("[*] training from scratch.")

        # training loop
        summary_writer = tf.summary.create_file_writer('./logs/' +
                                                       cfg['sub_name'])
        total_steps = steps_per_epoch * cfg['epoch']
        remain_steps = max(total_steps - checkpoint.step.numpy(), 0)
        prog_bar = ProgressBar(steps_per_epoch,
                               checkpoint.step.numpy() % steps_per_epoch)

        train_acc = AvgrageMeter()
        val_acc = AvgrageMeter()
        best_acc = 0.
        for inputs, labels in train_dataset.take(remain_steps):
            checkpoint.step.assign_add(1)
            drop_path_prob = cfg['drop_path_prob'] * (
                tf.cast(checkpoint.step, tf.float32) / total_steps)
            steps = checkpoint.step.numpy()
            epochs = ((steps - 1) // steps_per_epoch) + 1

            logits, total_loss, losses = train_step(inputs, labels,
                                                    drop_path_prob)
            train_acc.update(
                accuracy(logits.numpy(), labels.numpy())[0], cfg['batch_size'])

            prog_bar.update(
                "epoch={}/{}, loss={:.4f}, acc={:.2f}, lr={:.2e}".format(
                    epochs, cfg['epoch'], total_loss.numpy(), train_acc.avg,
                    optimizer.lr(steps).numpy()))

            if steps % cfg['val_steps'] == 0 and steps > 1:
                print("\n[*] validate...", end='')
                val_acc.reset()
                for inputs_val, labels_val in val_dataset:
                    logits_val, _ = model((inputs_val, tf.constant([0.])))
                    val_acc.update(
                        accuracy(logits_val.numpy(), labels_val.numpy())[0],
                        inputs_val.shape[0])

                if val_acc.avg > best_acc:
                    best_acc = val_acc.avg
                    model.save_weights(
                        f"checkpoints/{cfg['sub_name']}/best.ckpt")

                val_str = " val acc {:.2f}%, best acc {:.2f}%"
                print(val_str.format(val_acc.avg, best_acc), end='')

            if steps % 10 == 0:
                with summary_writer.as_default():
                    tf.summary.scalar('acc/train', train_acc.avg, step=steps)
                    tf.summary.scalar('acc/val', val_acc.avg, step=steps)

                    tf.summary.scalar('loss/total_loss',
                                      total_loss,
                                      step=steps)
                    for k, l in losses.items():
                        tf.summary.scalar('loss/{}'.format(k), l, step=steps)
                    tf.summary.scalar('learning_rate',
                                      optimizer.lr(steps),
                                      step=steps)

            if steps % cfg['save_steps'] == 0:
                manager.save()
                print("\n[*] save ckpt file at {}".format(
                    manager.latest_checkpoint))

            if steps % steps_per_epoch == 0:
                train_acc.reset()

        manager.save()
        print("\n[*] training one arch done! save ckpt file at {}".format(
            manager.latest_checkpoint))
        final_acc.loc[arch_num] = list([arch, best_acc])
    print("Whole training ended, the best result is :")
    print("\t", final_acc.iloc[final_acc['acc'].idxmax()])
コード例 #3
0
def main(_):
    '''
    Train for one epoch to get supernet , then random sample 50 architectures for finetuning.
    This structure is basically the same as train_search.py
    TODO: Add PGD here and calculate FSP
    '''
    # init
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
    os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu

    logger = tf.get_logger()
    logger.disabled = True
    logger.setLevel(logging.FATAL)
    set_memory_growth()

    cfg = load_yaml(FLAGS.cfg_path)

    # define network
    sna = SearchNetArch(cfg)
    sna.model.summary(line_length=80)
    print("param size = {:f}MB".format(count_parameters_in_MB(sna.model)))

    # load dataset
    t_split = f"train[0%:{int(cfg['train_portion'] * 100)}%]"
    v_split = f"train[{int(cfg['train_portion'] * 100)}%:100%]"
    train_dataset = load_cifar10_dataset(
        cfg['batch_size'],
        split=t_split,
        shuffle=True,
        drop_remainder=True,
        using_normalize=cfg['using_normalize'],
        using_crop=cfg['using_crop'],
        using_flip=cfg['using_flip'],
        using_cutout=cfg['using_cutout'],
        cutout_length=cfg['cutout_length'])
    val_dataset = load_cifar10_dataset(cfg['batch_size'],
                                       split=v_split,
                                       shuffle=True,
                                       drop_remainder=True,
                                       using_normalize=cfg['using_normalize'],
                                       using_crop=cfg['using_crop'],
                                       using_flip=cfg['using_flip'],
                                       using_cutout=cfg['using_cutout'],
                                       cutout_length=cfg['cutout_length'])

    # define optimizer
    steps_per_epoch = int(cfg['dataset_len'] * cfg['train_portion'] //
                          cfg['batch_size'])
    learning_rate = CosineAnnealingLR(initial_learning_rate=cfg['init_lr'],
                                      t_period=cfg['epoch'] * steps_per_epoch,
                                      lr_min=cfg['lr_min'])
    optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate,
                                        momentum=cfg['momentum'])
    optimizer_arch = tf.keras.optimizers.Adam(
        learning_rate=cfg['arch_learning_rate'], beta_1=0.5, beta_2=0.999)

    # define losses function
    criterion = CrossEntropyLoss()

    # load checkpoint
    checkpoint_dir = './checkpoints/' + cfg['sub_name']
    checkpoint = tf.train.Checkpoint(step=tf.Variable(0, name='step'),
                                     optimizer=optimizer,
                                     optimizer_arch=optimizer_arch,
                                     model=sna.model,
                                     alphas_normal=sna.alphas_normal,
                                     alphas_reduce=sna.alphas_reduce,
                                     betas_normal=sna.betas_normal,
                                     betas_reduce=sna.betas_reduce)
    manager = tf.train.CheckpointManager(checkpoint=checkpoint,
                                         directory=checkpoint_dir,
                                         max_to_keep=3)
    if manager.latest_checkpoint:
        checkpoint.restore(manager.latest_checkpoint)
        print('[*] load ckpt from {} at step {}.'.format(
            manager.latest_checkpoint, checkpoint.step.numpy()))
    else:
        print("[*] training from scratch.")
    print(f"[*] searching model after {cfg['start_search_epoch']} epochs.")

    # define training step function for model
    @tf.function
    def train_step(inputs, labels):
        with tf.GradientTape() as tape:
            logits = sna.model((inputs, *sna.arch_parameters), training=True)

            losses = {}
            losses['reg'] = tf.reduce_sum(sna.model.losses)
            losses['ce'] = criterion(labels, logits)
            total_loss = tf.add_n([l for l in losses.values()])

        grads = tape.gradient(total_loss, sna.model.trainable_variables)
        grads = [(tf.clip_by_norm(grad, cfg['grad_clip'])) for grad in grads]
        optimizer.apply_gradients(zip(grads, sna.model.trainable_variables))

        return logits, total_loss, losses

    # define training step function for arch_parameters
    @tf.function
    def train_step_arch(inputs, labels):
        with tf.GradientTape() as tape:
            logits = sna.model((inputs, *sna.arch_parameters), training=True)

            losses = {}
            losses['reg'] = cfg['arch_weight_decay'] * tf.add_n(
                [tf.reduce_sum(p**2) for p in sna.arch_parameters])
            losses['ce'] = criterion(labels, logits)
            total_loss = tf.add_n([l for l in losses.values()])

        grads = tape.gradient(total_loss, sna.arch_parameters)
        optimizer_arch.apply_gradients(zip(grads, sna.arch_parameters))

        return losses

    summary_writer = tf.summary.create_file_writer('./logs/' + cfg['sub_name'])

    print("[*] finished searching for one epoch")

    print("[*] Start sampling architetures")

    prog_bar = ProgressBar(50, 0)

    # Start sampling for 50 archs
    for geno_num in range(50):
        genotype = sna.get_genotype(random_search_flag=True)
        prog_bar.update(f"\n Sampled{geno_num}th arch: {genotype}")
        # print(f"\n Sampled {geno_num}th arch: {genotype}")
        f = open(
            os.path.join('./logs', cfg['sub_name'],
                         'search_random_arch_genotype.py'), 'a')
        f.write(f"\n{cfg['sub_name']}_{geno_num} = {genotype}\n")
        f.close()

    print("Sampling done!")
    debugpy.wait_for_client()
コード例 #4
0
ファイル: train_search.py プロジェクト: ventful/pcdarts-tf2
def main(_):
    # init
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
    os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu

    logger = tf.get_logger()
    logger.disabled = True
    logger.setLevel(logging.FATAL)
    set_memory_growth()

    cfg = load_yaml(FLAGS.cfg_path)

    # define network
    sna = SearchNetArch(cfg)
    sna.model.summary(line_length=80)
    print("param size = {:f}MB".format(count_parameters_in_MB(sna.model)))

    # load dataset
    t_split = f"train[0%:{int(cfg['train_portion'] * 100)}%]"
    v_split = f"train[{int(cfg['train_portion'] * 100)}%:100%]"
    train_dataset = load_cifar10_dataset(
        cfg['batch_size'],
        split=t_split,
        shuffle=True,
        drop_remainder=True,
        using_normalize=cfg['using_normalize'],
        using_crop=cfg['using_crop'],
        using_flip=cfg['using_flip'],
        using_cutout=cfg['using_cutout'],
        cutout_length=cfg['cutout_length'])
    val_dataset = load_cifar10_dataset(cfg['batch_size'],
                                       split=v_split,
                                       shuffle=True,
                                       drop_remainder=True,
                                       using_normalize=cfg['using_normalize'],
                                       using_crop=cfg['using_crop'],
                                       using_flip=cfg['using_flip'],
                                       using_cutout=cfg['using_cutout'],
                                       cutout_length=cfg['cutout_length'])

    # define optimizer
    steps_per_epoch = int(cfg['dataset_len'] * cfg['train_portion'] //
                          cfg['batch_size'])
    learning_rate = CosineAnnealingLR(initial_learning_rate=cfg['init_lr'],
                                      t_period=cfg['epoch'] * steps_per_epoch,
                                      lr_min=cfg['lr_min'])
    optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate,
                                        momentum=cfg['momentum'])
    optimizer_arch = tf.keras.optimizers.Adam(
        learning_rate=cfg['arch_learning_rate'], beta_1=0.5, beta_2=0.999)

    # define losses function
    criterion = CrossEntropyLoss()

    # load checkpoint
    checkpoint_dir = './checkpoints/' + cfg['sub_name']
    checkpoint = tf.train.Checkpoint(step=tf.Variable(0, name='step'),
                                     optimizer=optimizer,
                                     optimizer_arch=optimizer_arch,
                                     model=sna.model,
                                     alphas_normal=sna.alphas_normal,
                                     alphas_reduce=sna.alphas_reduce,
                                     betas_normal=sna.betas_normal,
                                     betas_reduce=sna.betas_reduce)
    manager = tf.train.CheckpointManager(checkpoint=checkpoint,
                                         directory=checkpoint_dir,
                                         max_to_keep=3)
    if manager.latest_checkpoint:
        checkpoint.restore(manager.latest_checkpoint)
        print('[*] load ckpt from {} at step {}.'.format(
            manager.latest_checkpoint, checkpoint.step.numpy()))
    else:
        print("[*] training from scratch.")
    print(f"[*] searching model after {cfg['start_search_epoch']} epochs.")

    # define training step function for model
    @tf.function
    def train_step(inputs, labels):
        with tf.GradientTape() as tape:
            logits = sna.model((inputs, *sna.arch_parameters), training=True)

            losses = {}
            losses['reg'] = tf.reduce_sum(sna.model.losses)
            losses['ce'] = criterion(labels, logits)
            total_loss = tf.add_n([l for l in losses.values()])

        grads = tape.gradient(total_loss, sna.model.trainable_variables)
        grads = [(tf.clip_by_norm(grad, cfg['grad_clip'])) for grad in grads]
        optimizer.apply_gradients(zip(grads, sna.model.trainable_variables))

        return logits, total_loss, losses

    # define training step function for arch_parameters
    @tf.function
    def train_step_arch(inputs, labels):
        with tf.GradientTape() as tape:
            logits = sna.model((inputs, *sna.arch_parameters), training=True)

            losses = {}
            losses['reg'] = cfg['arch_weight_decay'] * tf.add_n(
                [tf.reduce_sum(p**2) for p in sna.arch_parameters])
            losses['ce'] = criterion(labels, logits)
            total_loss = tf.add_n([l for l in losses.values()])

        grads = tape.gradient(total_loss, sna.arch_parameters)
        optimizer_arch.apply_gradients(zip(grads, sna.arch_parameters))

        return losses

    # training loop
    summary_writer = tf.summary.create_file_writer('./logs/' + cfg['sub_name'])
    total_steps = steps_per_epoch * cfg['epoch']
    remain_steps = max(total_steps - checkpoint.step.numpy(), 0)
    prog_bar = ProgressBar(steps_per_epoch,
                           checkpoint.step.numpy() % steps_per_epoch)

    train_acc = AvgrageMeter()
    for inputs, labels in train_dataset.take(remain_steps):
        checkpoint.step.assign_add(1)
        steps = checkpoint.step.numpy()
        epochs = ((steps - 1) // steps_per_epoch) + 1

        if epochs > cfg['start_search_epoch']:
            inputs_val, labels_val = next(iter(val_dataset))
            arch_losses = train_step_arch(inputs_val, labels_val)

        logits, total_loss, losses = train_step(inputs, labels)
        train_acc.update(
            accuracy(logits.numpy(), labels.numpy())[0], cfg['batch_size'])

        prog_bar.update(
            "epoch={:d}/{:d}, loss={:.4f}, acc={:.2f}, lr={:.2e}".format(
                epochs, cfg['epoch'], total_loss.numpy(), train_acc.avg,
                optimizer.lr(steps).numpy()))

        if steps % 10 == 0:
            with summary_writer.as_default():
                tf.summary.scalar('acc/train', train_acc.avg, step=steps)

                tf.summary.scalar('loss/total_loss', total_loss, step=steps)
                for k, l in losses.items():
                    tf.summary.scalar('loss/{}'.format(k), l, step=steps)
                tf.summary.scalar('learning_rate',
                                  optimizer.lr(steps),
                                  step=steps)

                if epochs > cfg['start_search_epoch']:
                    for k, l in arch_losses.items():
                        tf.summary.scalar('arch_losses/{}'.format(k),
                                          l,
                                          step=steps)
                    tf.summary.scalar('arch_learning_rate',
                                      cfg['arch_learning_rate'],
                                      step=steps)

        if steps % cfg['save_steps'] == 0:
            manager.save()
            print("\n[*] save ckpt file at {}".format(
                manager.latest_checkpoint))

        if steps % steps_per_epoch == 0:
            train_acc.reset()
            if epochs > cfg['start_search_epoch']:
                genotype = sna.get_genotype()
                print(f"\nsearch arch: {genotype}")
                f = open(
                    os.path.join('./logs', cfg['sub_name'],
                                 'search_arch_genotype.py'), 'a')
                f.write(f"\n{cfg['sub_name']}_{epochs} = {genotype}\n")
                f.close()

    manager.save()
    print("\n[*] training done! save ckpt file at {}".format(
        manager.latest_checkpoint))