def predict_and_save_csv(self,test_features,test_ids, avg_score, final_score = None): title = get_filename(self.model_args['model']) print(f'Saving predictions to {title}.csv...\n') y_preds = self.model.predict(test_features) y_ids = pd.DataFrame(test_ids, columns=['ID']) y_preds_df = pd.DataFrame(y_preds, columns=['target']) predictions = y_ids.join(y_preds_df) predictions.to_csv(f'{self.config_args["output"]}/{title}.csv', index = False) self.log_experiment(self.model_args['model'], title, avg_score, final_score)
def predict_and_save_csv(self, test_features): print('Training Decision Tree Model...\n') self.train_model() print('Saving predictions to csv...\n') title = get_filename('decision_tree') output_directory = Config().get_config()['output_directory'] y_preds = self.model.predict(test_features) y_ids = pd.DataFrame(self.test_ids, columns=['ID']) y_preds_df = pd.DataFrame(y_preds, columns=['Label_Id']) predictions = y_ids.join(y_preds_df) predictions = self.label_encoder.decode(predictions) predictions.to_csv(f'{output_directory}/{title}.csv', index=False)
def predict_and_save_csv(self, test_features, skip_pipeline=False): print('Training XGBoost Classifier...\n') self.train_model(skip_pipeline) title = get_filename('xgboost') print(f'Saving predictions to csv {title}...\n') output_directory = Config().get_config()['output_directory'] y_preds = self.model.predict(test_features) y_ids = pd.DataFrame(self.test_ids, columns=['ID']) y_preds_df = pd.DataFrame(y_preds, columns=['Label_Id']) predictions = y_ids.join(y_preds_df) predictions = self.label_encoder.decode(predictions) predictions.to_csv(f'{output_directory}/{title}.csv', index=False)
def predict_and_save_csv(self, test_features, model_type='Gaussian'): print('Training NaiveBayesian model...\n') self.train_model(model_type) print('Saving predictions to csv...\n') title = get_filename('naive_bayesian_multinom') output_directory = Config().get_config()['output_directory'] y_preds = None if model_type == 'Gaussian': y_preds = self.model.predict(self.test_features.toarray()) else: y_preds = self.model.predict(test_features) y_ids = pd.DataFrame(self.test_ids, columns=['ID']) y_preds_df = pd.DataFrame(y_preds, columns=['Label_Id']) predictions = y_ids.join(y_preds_df) predictions = self.label_encoder.decode(predictions) predictions.to_csv(f'{output_directory}/{title}.csv', index=False)
def tileset_dialog(self, path_input: TextInput, name_input: Optional[TextInput] = None): if not has_tk: return value = path_input.get_value() initialfile = value or None filepath = askopenfilename( initialfile = initialfile, filetypes = [ ( "Arquivos de Imagem", (".png", ".jpg", ".bmp", ".tiff", ".webp") ) ] ) if filepath: path_input.set_value(filepath) if name_input and not name_input.get_value(): name = utils.get_filename(filepath) name_input.set_value(name)