コード例 #1
0
ファイル: model.py プロジェクト: forwiat/thread_music
 def single_train(self):
     self.x, self.y = get_next_batch()
     self.global_step = tf.get_variable('global_step',
                                        initializer=0,
                                        dtype=tf.int32,
                                        trainable=False)
     self.lr = tf.train.exponential_decay(learning_rate=hp.LR,
                                          global_step=self.global_step,
                                          decay_rate=hp.DECAY_RATE,
                                          decay_steps=hp.DECAY_STEPS)
     self.optimizer = tf.train.AdamOptimizer(self.lr)
     with tf.variable_scope(self.scope_name, reuse=self.reuse):
         self.y_hat = lstm_3_layers(self.x,
                                    num_units=hp.UNITS,
                                    bidirection=False,
                                    scope='lstm_3_layers')  # [N, U]
         self.y_hat = tf.layers.dense(self.y_hat,
                                      units=hp.LABEL_SIZE * 2,
                                      activation=tf.nn.tanh,
                                      name='dense_1')  # [N, L*2]
         self.y_hat = tf.layers.dense(self.y_hat,
                                      units=hp.LABEL_SIZE,
                                      activation=tf.nn.sigmoid,
                                      name='output_1')  # [N, L]
     self.loss = tf.reduce_sum(
         tf.reduce_mean(tf.square(self.y - self.y_hat)))
     self.grads = self.optimizer.compute_gradients(self.loss)
     clipped = []
     for grad, var in self.grads:
         grad = tf.clip_by_norm(grad, 5.)
         clipped.append((grad, var))
     self.train_op = self.optimizer.apply_gradients(
         clipped, global_step=self.global_step)
コード例 #2
0
ファイル: model.py プロジェクト: forwiat/vae_tacotron
 def train(self):
     self.text, self.refer_mel, self.mel, self.linear = get_next_batch()
     self.encoder_inputs = embedding(self.text, scope='embedding', reuse=self.reuse)
     self.decoder_inputs = tf.concat((tf.zeros_like(self.mel[:, :1, :]), self.mel[:, :-1, :]), 1)
     self.decoder_inputs = self.decoder_inputs[:, :, -hp.N_MELS:]
     with tf.variable_scope(self.scope_name):
         self.text_outputs = encoder(self.encoder_inputs, is_training=self.is_training)
         self.vae_outputs, self.mu, self.log_var = vae(self.refer_mel, is_training=self.is_training)
         self.encoder_outputs = self.text_outputs + self.vae_outputs
         self.mel_hat, self.alignments = decoder(self.decoder_inputs,
                                                self.encoder_outputs,
                                                is_training=self.is_training)
         self.linear_hat = postnet(self.mel_hat, is_training=self.is_training)
     if self.mode in ['train', 'eval']:
         self.global_step = tf.get_variable('global_step', initializer=0, dtype=tf.int32, trainable=False)
         self.lr = tf.train.exponential_decay(learning_rate=hp.LR, global_step=self.global_step,
                                              decay_steps=hp.DECAY_STEPS,
                                              decay_rate=hp.DECAY_RATE)
         self.optimizer = tf.train.AdamOptimizer(self.lr)
         self.mel_loss = tf.reduce_mean(tf.abs(self.mel_hat - self.mel))
         self.linear_loss = tf.reduce_mean(tf.abs(self.linear_hat - self.linear))
         self.kl_loss = - 0.5 * tf.reduce_sum(1 + self.log_var - tf.pow(self.mu, 2) - tf.exp(self.log_var))
         self.vae_loss_weight = control_weight(self.global_step)
         self.loss = self.mel_loss + self.linear_loss + self.vae_loss_weight * self.kl_loss
         self.
コード例 #3
0
ファイル: model.py プロジェクト: forwiat/thread_music
 def test(self):
     with tf.device('/cpu:0'):
         self.x, self.y = get_next_batch()
         with tf.variable_scope(self.scope_name, reuse=self.reuse):
             self.y_hat = lstm_3_layers(self.x,
                                        num_units=hp.UNITS,
                                        bidirection=False,
                                        scope='lstm_3_layers')  # [N, U]
             self.y_hat = tf.layers.dense(self.y_hat,
                                          units=hp.LABEL_SIZE * 2,
                                          activation=tf.nn.tanh,
                                          name='dense_1')  # [N, L*2]
             self.y_hat = tf.layers.dense(self.y_hat,
                                          units=hp.LABEL_SIZE,
                                          activation=tf.nn.sigmoid,
                                          name='output_1')  # [N, L]
コード例 #4
0
ファイル: model.py プロジェクト: forwiat/thread_music
    def multi_train(self):
        def _assign_to_device(device, ps_device='/cpu:0'):
            PS_OPS = ['Variable', 'VariableV2', 'AutoReloadVariable']

            def _assign(op):
                node_def = op if isinstance(op, tf.NodeDef) else op.node_def
                if node_def.op in PS_OPS:
                    return '/' + ps_device
                else:
                    return device

            return _assign

        def _average_gradients(tower_grads):
            average_grads = []
            for grad_and_vars in zip(*tower_grads):
                grads = []
                for g, _ in grad_and_vars:
                    expanded_g = tf.expand_dims(g, 0)
                    grads.append(expanded_g)
                grad = tf.concat(grads, 0)
                grad = tf.reduce_mean(grad, 0)
                v = grad_and_vars[0][1]
                grad_and_var = (grad, v)
                average_grads.append(grad_and_var)
            return average_grads

        with tf.device('/cpu:0'):
            self.x, self.y, self.mask = get_next_batch()
            self.tower_grads = []
            self.global_step = tf.get_variable('global_step',
                                               initializer=0,
                                               dtype=tf.int32,
                                               trainable=False)
            self.lr = tf.train.exponential_decay(hp.LR,
                                                 global_step=self.global_step,
                                                 decay_steps=hp.DECAY_STEPS,
                                                 decay_rate=hp.DECAY_RATE)
            self.optimizer = tf.train.AdamOptimizer(learning_rate=self.lr)
            gpu_nums = len(hp.GPU_IDS)
            per_batch = hp.BATCH_SIZE // gpu_nums
            with tf.variable_scope(self.scope_name, reuse=self.reuse):
                for i in range(gpu_nums):
                    with tf.device(
                            _assign_to_device('/gpu:{}'.format(hp.GPU_IDS[i]),
                                              ps_device='/cpu:0')):
                        self._x = self.x[i * per_batch:(i + 1) * per_batch]
                        self._y = self.y[i * per_batch:(i + 1) * per_batch]
                        self._mask = self.mask[i * per_batch:(i + 1) *
                                               per_batch]
                        self.y_hat = lstm_3_layers(
                            self.x,
                            num_units=hp.UNITS,
                            bidirection=False,
                            scope='lstm_3_layers')  # [N, U]
                        self.y_hat = tf.layers.dense(
                            self.y_hat,
                            units=hp.LABEL_SIZE * 2,
                            activation=tf.nn.tanh,
                            name='dense_1')  # [N, L*2]
                        self.y_hat = tf.layers.dense(self.y_hat,
                                                     units=hp.LABEL_SIZE,
                                                     activation=tf.nn.sigmoid,
                                                     name='output_1')  # [N, L]
                        tf.get_variable_scope().reuse_variables()
                        # loss
                        self.loss = tf.reduce_sum(
                            tf.reduce_mean(tf.square(self.y - self.y_hat)))
                        self.grads = self.optimizer.compute_gradients(
                            self.loss)
                        self.tower_grads.append(self.grads)
            self.tower_grads = _average_gradients(self.tower_grads)
            clipped = []
            for grad, var in self.tower_grads:
                grad = tf.clip_by_norm(grad, 5.)
                clipped.append((grad, var))
            self.train_op = self.optimizer.apply_gradients(
                clipped, global_step=self.global_step)
コード例 #5
0
 def train(self):
     self.ori_spk, self.ori_mel, self.aim_spk, self.aim_mel = get_next_batch()
     self.flow()
     self.update()
コード例 #6
0
 def train(self):
     self.ori_spk, self.ori_feat, self.aim_spk, self.aim_feat, \
     self.t_G, self.t_D_fake, self.t_D_real = get_next_batch()
     self.flow()
     self.update()