コード例 #1
0
def site_iter_process(valid_refs,c):
#for r in range(len(valid_refs)):
    ref = valid_refs[c]
    print ref
    
    #get site instrument for species
    met_i = met_refs.index(ref)
    print len(met_refs)
    print len(met_species)
    site_species = list(met_species[met_i])
    site_instruments = list(met_instruments[met_i])
    print site_species
    print site_instruments
    mm = site_instruments[site_species.index(species)]
    
    site_resolutions = []
    data_valid = True

    s_files = insensitive_glob('/work/home/db876/observations/surface/%s/EANET/*%s.csv'%(species,ref))
    site_files = []
    for y in year_array:
        for f in s_files:
            if str(y)[-2:] in f:
                site_files.append(f)
                           
    site_files = modules.natsorted(site_files)
    
    if site_files == []:
        print 'No files for ref.\n'
    
    years = []
    months = []
    days = []
    hours = []

    vals = []
    
    last_year_index = len(site_files)
    for y in year_array:
        print 'Processing Year %s'%y 
        got_year = False
        for file in site_files:
            last_file_split = file.split('/')[-1]
            if str(y)[2:] in last_file_split:
                got_year = True
                break
        if got_year == False:
            #fill in data for missing year
            timedelta_diff = datetime.date(y+1, 1, 1) - datetime.date(y, 1, 1)
            ndays_missing = timedelta_diff.days
            print 'ndays missing = ', ndays_missing
            
            vals=np.append(vals,[-99999]*(ndays_missing*24))
            
            continue
            
        print file
        
        valid = True
        with open(file, 'rb') as f:
            reader = csv.reader(f,delimiter=',')
            counter = 0
            
            #get resolution
            for row in reader:
                if counter == 0:
                    all_units = row
            
                elif counter == 1:   
                    file_res = 'H'
            
                    try:
                        hour_index = row.index('Hour')
                    except:
                        file_res = 'D'
                    try:
                        day_index = row.index('Day')
                    except:
                        file_res = 'M'
                    month_index = row.index('Month')
                    year_index = row.index('Year')
                    
                    try:
                        spec_index = row.index(species.upper())
                        units = all_units[spec_index] 
                    except:
                        valid = False
                        break
                    
                    #make sure each year units are ppb
                    if units != 'ppb':
                        print 'Units not ppb!'
                        1+'a'
                        
                if counter == 2:
                    if file_res == 'H':
                        yyyy = row[year_index]
                        mm = row[month_index]
                        dd = row[day_index]
                        hh = row[hour_index]
                    elif file_res == 'D':
                        yyyy = row[year_index]
                        mm = row[month_index]
                        dd = row[day_index]
                        hh = 1
                    elif file_res == 'M':
                        yyyy = row[year_index]
                        mm = row[month_index]
                        dd = 1
                        hh = 1
        
                    start_datetime = datetime.datetime(int(yyyy),int(mm),int(dd),int(hh))
                
                if counter == 3:
                    if file_res == 'H':
                        yyyy = row[year_index]
                        mm = row[month_index]
                        dd = row[day_index]
                        hh = row[hour_index]
                    elif file_res == 'D':
                        yyyy = row[year_index]
                        mm = row[month_index]
                        dd = row[day_index]
                        hh = 1
                    elif file_res == 'M':
                        yyyy = row[year_index]
                        mm = row[month_index]
                        dd = 1
                        hh = 1
            
                    present_datetime = datetime.datetime(int(yyyy),int(mm),int(dd),int(hh))
                
                    time_delt = present_datetime-start_datetime
                    hour_delt = datetime.timedelta(hours=1)
                    day_delt = datetime.timedelta(hours=24)
                    week_delt = datetime.timedelta(hours=24*7)
                    month_delt = datetime.timedelta(hours=24*28)
                
                    print time_delt
            
                    if (time_delt < day_delt):
                        print 'Hourly Data'
                        file_res = 'H'
                        site_resolutions.append(file_res)
                
                    elif (time_delt > hour_delt) & (time_delt < week_delt):
                        print 'Daily Data'
                        file_res = 'D'
                        site_resolutions.append(file_res)
                
                    elif (time_delt > week_delt):
                        print 'Monthly Data'
                        file_res = 'M'
                        site_resolutions.append(file_res)
                
                    #break
                    #limit files by timeres return if not suitable for output res
                    if output_res == 'H':
                        if (file_res == 'D') or (file_res == 'M'):
                            print 'File resolution has to be Minimum Hourly. Skipping'
                            data_valid = False
                            return c,vals,data_valid,-999,-999,-999,'na','na','na','na','na'
                    elif (output_res == 'D'):
                        if (file_res == 'M'):
                            print 'File resolution has to be Minimum Daily. Skipping'
                            data_valid = False
                            return c,vals,data_valid,-999,-999,-999,'na','na','na','na','na'        
                                    
                counter+=1
        
        #READ IN DATA   
        if valid == True:             
            with open(file, 'rb') as f:       
                reader = csv.reader(f,delimiter=',')
                counter = 0
                for row in reader:
            
                    if counter >= 2:
                        yyyy = row[year_index]
                        mm = row[month_index]                    
                
                        if file_res == 'H':
                            try:
                                vals=np.append(vals,np.float64(row[spec_index]))
                            except:
                                vals=np.append(vals,-99999)
                
                        elif file_res == 'D':
                            try:
                                vals=np.append(vals,[np.float64(row[spec_index])]*24)
                            except:
                                vals=np.append(vals,[-99999]*24)
                        
                        elif file_res == 'M':
                            month_days = monthrange(int(yyyy), int(mm))[1]
                            try:
                                vals=np.append(vals,[np.float64(row[spec_index])]*(month_days*24))
                            except:
                                vals=np.append(vals,[-99999]*(month_days*24))
                            
                    counter+=1
        else:
            print 'Species is not in file header. Skipping Year'
            timedelta_diff = datetime.date(y+1, 1, 1) - datetime.date(y, 1, 1)
            ndays_missing = timedelta_diff.days
            print 'ndays missing = ', ndays_missing
            vals=np.append(vals,[-99999]*(ndays_missing*24))
            
            
    valid_refs_rev.append(ref)                    
    
    i_ref = met_refs.index(ref)
    tz = np.float64(met_tz[i_ref])
    lat = np.float64(met_lats[i_ref])
    lon = np.float64(met_lons[i_ref])
    alt = np.float64(met_alts[i_ref])
    raw_class_name = met_class[i_ref]
    anthrome_class_name = class_name[i_ref]
    
    #check tz is whole number else skip site
    if (tz % 1) != 0:
        print 'Timezone is not even. Skipping'
        data_valid = False
    
    tz = int(tz)
    #correct time to UTC
    if tz < 0:
        #get rid of values at start and append -99999's at end
        cut = vals[:tz]
        for num in range(np.abs(tz)):
            cut = np.insert(cut,0, -99999)
        vals = cut
    elif tz > 0:
        #put -99999's at start and get rid of values at end
        cut = vals[tz:]
        for num in range(tz):
            cut = np.append(cut, -99999)
        vals = cut
        
    #do data quality checks        
    full_data,data_valid = modules.quality_check(vals,data_valid,data_resolution,np.float64(alt),grid_dates,start_year,end_year)
     
    #if all site resolutions are same continue, make program exit
    all_same = all(x == site_resolutions[0] for x in site_resolutions)
    if all_same == True:
        pass
    else:
        print 'Not all files for site have same resolution. Skipping.'
        data_valid = False
        return c,full_data,data_valid,-999,-999,-999,'na','na','na','na','na'   
     
    #set sampling as average
    st = 'average' 
     
    return c,full_data,data_valid,lat,lon,alt,raw_class_name,anthrome_class_name,mm,st,file_res 
コード例 #2
0
def site_iter_process(valid_refs, c):

    # for each valid location process
    # limit obs data due for each site in valid_obs_site_names
    # for c in range(len(valid_refs)):

    all_lat = []
    all_lon = []
    all_alt = []
    all_st = []
    all_mm = []

    site_ref = valid_refs[c]

    file_valid = True
    data_valid = True

    print site_ref
    file_res = data_resolutions[c]
    print file_res

    # read files for each valid site
    s_files = sorted(
        glob.glob("/work/home/db876/observations/surface/%s/GAW/%s**.%s**.dat" % (species, site_ref.lower(), file_res))
    )

    print s_files
    if file_res == "hr":
        site_files = sorted(s_files, key=lambda x: x.split(".hr")[1])

    else:
        site_files = sorted(s_files)

    delete_inds = []
    if file_res == "hr":
        # limit site files before and after year limit

        for i in range(len(site_files)):
            f = site_files[i]
            year = f.split(".hr")[1][:4]
            if int(year) < int(start_year):
                delete_inds.append(i)
            if int(year) > int(end_year):
                delete_inds.append(i)

        site_files = np.delete(site_files, delete_inds)
        print site_files

    site_file_len = len(site_files)
    s_count = 0
    start_ind = 0
    end_ind = 0
    for f in site_files:
        print f
        read = np.loadtxt(f, dtype="S10,S5,f8", comments="C", usecols=(0, 1, 4), unpack=True)
        read = np.array(read)

        dates = read[0, :]
        times = read[1, :]
        conc = read[2, :]
        conc = np.array(conc)
        conc = conc.astype(float)

        # change all vals < 0 to np.NaN
        inv_test = conc < 0
        conc[inv_test] = np.NaN

        start_ind = end_ind
        end_ind += len(conc)

        s_count += 1

        units = []
        mycsv = csv.reader(open(f))
        row_count = 0
        for row in mycsv:
            if row_count == 11:
                val = " ".join(row)
                lat = val.replace(" ", "")
                lat = lat[12:]
                lat = float(lat)
                all_lat.append(lat)
            # get lon
            if row_count == 12:
                val = " ".join(row)
                lon = val.replace(" ", "")
                lon = lon[13:]
                lon = float(lon)
                all_lon.append(lon)
            # get altitude
            if row_count == 13:
                val = " ".join(row)
                alt = val.replace(" ", "")
                alt = alt[12:]
                alt = float(alt)
                all_alt.append(alt)
            # get units
            if row_count == 20:
                val = " ".join(row)
                unit = val.replace(" ", "")
                unit = unit[19:]
            # get measurement method
            if row_count == 21:
                val = " ".join(row)
                mm = val.replace(" ", "")
                mm = mm[21:]
                all_mm.append(mm)
            # get sampling type
            if row_count == 22:
                val = " ".join(row)
                st = val.replace(" ", "")
                st = st[16:]
                all_st.append(st)
            if row_count == 23:
                val = " ".join(row)
                tz = val.replace(" ", "")
                tz = tz[12:]

            row_count += 1

        # test if units are in ppb for each file - if not convert

        if (unit != "ppb") & (unit != "ppbv"):
            if (unit == "ug/m3") or (unit == "ugN/m3"):
                print "converting units, temp = 20degC"
                # calculate conversion factor from mg/m3 assuming 20 degC and 1 atm - default for GAW site O3 instruments
                # R/MW*(TEMP0C(K)*TEMP(degC)/P(hPa)/10
                conv_fact = 8.3144 / mol_mass * (273.15 + 20) / (1013.25 / 10)
                conc = conv_fact * conc
            elif (unit == "ug/m3-20C") or (unit == "ugN/m3-20C"):
                print "converting units, temp = 20degC"
                # calculate conversion factor from mg/m3 assuming 20 degC and 1 atm - default for GAW site O3 instruments
                # R/MW*(TEMP0C(K)*TEMP(degC)/P(hPa)/10
                conv_fact = 8.3144 / mol_mass * (273.15 + 20) / (1013.25 / 10)
                conc = conv_fact * conc
            elif (unit == "ug/m3-25C") or (unit == "ugN/m3-25C") or (unit == "ug/m3at25C"):
                print "converting units, temp = 25degC"
                # calculate conversion factor from mg/m3 assuming 25 degC and 1 atm
                # R/MW*(TEMP0C(K)*TEMP(degC)/P(hPa)/10
                conv_fact = 8.3144 / mol_mass * (273.15 + 25) / (1013.25 / 10)
                conc = conv_fact * conc
            elif (unit == "mg/m3-20C") or (unit == "mgN/m3-20C"):
                print "converting units, temp = 25degC"
                # calculate conversion factor from mg/m3 assuming 25 degC and 1 atm
                # R/MW*(TEMP0C(K)*TEMP(degC)/P(hPa)/10
                conv_fact = 8.3144 / mol_mass * (273.15 + 20) / (1013.25 / 10)
                conc = (conv_fact * conc) * 1e3
            elif (unit == "mg/m3-25C") or (unit == "mgN/m3-25C"):
                print "converting units, temp = 25degC"
                # calculate conversion factor from mg/m3 assuming 25 degC and 1 atm
                # R/MW*(TEMP0C(K)*TEMP(degC)/P(hPa)/10
                conv_fact = 8.3144 / mol_mass * (273.15 + 25) / (1013.25 / 10)
                conc = (conv_fact * conc) * 1e3
            elif (unit == "ppm") or (unit == "ppmv"):
                conc = conc * 1.0e3
            elif (unit == "ppt") or (unit == "pptv"):
                conc = conc / 1.0e3

            else:
                print "Unknown Unit"
                print unit
                1 + "a"
                break

        if tz != "UTC":
            if tz == "":
                if site_ref.lower() in ["plm"]:
                    tz = -5

                if site_ref.lower() in ["kos", "edm", "vdl", "nwr"]:
                    tz = 0

                if site_ref.lower() in [
                    "jfj",
                    "kps",
                    "rig",
                    "pay",
                    "glh",
                    "cmn",
                    "zep",
                    "dig",
                    "hhe",
                    "ktb",
                    "stp",
                    "ivn",
                    "jcz",
                    "kam",
                    "lzp",
                    "snz",
                    "zbl",
                    "kmw",
                    "don",
                    "mhn",
                    "nia",
                    "roq",
                    "spm",
                ]:
                    tz = 1

                if site_ref.lower() in ["rcv", "aht", "oul", "uto", "vir", "fdt", "sem", "stn"]:
                    tz = 2

                if site_ref.lower() in ["dak"]:
                    tz = 3

                if site_ref.lower() in ["shp"]:
                    tz = 4

                if site_ref.lower() in ["isk"]:
                    tz = 5

                if site_ref.lower() in ["hkg"]:
                    tz = 8

                if site_ref.lower() in ["cgo"]:
                    tz = 10
            else:
                tz = tz.replace("LocaltimeUTC", "")
                tz = tz.replace("OtherUTC", "")
                tz = tz.replace("Localtime", "")
                tz = tz.replace(":", ".")

                try:
                    before, sep, after = tz.rpartiton(".")
                    after = int(after)
                    conv = (100.0 / 60) * after
                    tz = before + sep + str(conv)
                except:
                    1 + 1
                tz = float(tz)

        else:
            tz = 0

        # check tz is whole number else skip site
        if (tz % 1) != 0:
            print "File Invalid, timezone is not a whole number."
            conc[:] = -99999

        # process dates from date, time to days since start year
        dates = [s.replace("-", "") for s in dates]
        times = [s.replace(":", "") for s in times]

        if file_res == "hr":
            # some times go from 0100 to 2400, assume this is when sites report ave for hour previous. Thus all times should have hour minused
            for i in range(len(times)):
                if times[i] == "2400":
                    current_date = dates[i]
                    test = np.array(dates) == current_date
                    indices = [i for i, x in enumerate(test) if x]
                    for x in indices:
                        current_time = times[x]
                        if current_time == "2400":
                            current_time = "0000"
                        date_datetime = datetime.datetime(
                            int(current_date[0:4]),
                            int(current_date[4:6]),
                            int(current_date[6:]),
                            int(current_time[:2]),
                            int(current_time[2:]),
                        )
                        date_datetime = date_datetime - datetime.timedelta(hours=1)
                        times[x] = date_datetime.strftime("%H%M")

            # adjust dates and times if tz is not equal to 0
            if tz != 0:
                for i in range(len(dates)):
                    # create datetime
                    dt = datetime.datetime(
                        int(dates[i][:4]), int(dates[i][4:6]), int(dates[i][6:]), int(times[i][:2]), int(times[i][2:])
                    )
                    if tz > 0:
                        # print 'Old dt', dt
                        dt = dt - datetime.timedelta(hours=int(tz))
                        # print 'New dt', dt
                    elif tz < 0:
                        # print 'Old dt', dt
                        dt = dt + datetime.timedelta(hours=np.abs(int(tz)))
                        # print 'New dt', dt
                    dates[i] = dt.strftime("%Y%m%d")
                    times[i] = dt.strftime("%H%M")

        data = [dates, times, conc]
        try:
            big_list = np.hstack((big_list, data))
        except:
            big_list = np.array(data)

        if s_count == site_file_len:

            # make sure big list exists
            try:
                big_list
            except:
                data_valid = False

            if data_valid == True:

                # get dates and times
                date_con = big_list[0, :]
                time_con = big_list[1, :]

                # get vals
                vals = np.array(big_list[2, :]).astype(float)

                # delete big list
                del big_list

                # if dates outside what asked for exclude
                first_date_val = int("%s0101" % (start_year))
                last_date_val = int("%s1231" % (end_year))

                test_valid = (np.array(date_con).astype(int) >= first_date_val) & (
                    np.array(date_con).astype(int) <= last_date_val
                )
                date_con = date_con[test_valid]
                time_con = time_con[test_valid]
                vals = vals[test_valid]

                # Check if any times are duplicate, if so delete all but first
                del_list = []
                for d in range(len(date_con) - 1):
                    if (date_con[d] == date_con[d + 1]) & (time_con[d] == time_con[d + 1]):
                        del_list.append(d + 1)
                if len(del_list) > 0:
                    print "Deleting duplicate timepoints"
                    print date_con[del_list], time_con[del_list]
                    date_con = np.delete(date_con, del_list)
                    time_con = np.delete(time_con, del_list)
                    vals = np.delete(vals, del_list)

                # if file resolution is daily or monthly then replicate times after point, to fill hourly data array.
                count = 0
                if file_res == "da":
                    file_hours = len(date_con)
                    for i in range(file_hours):
                        current_hh = int(time_con[count][:2])
                        current_mm = int(time_con[count][2:])
                        s = datetime.datetime(year=start_year, month=1, day=1, hour=current_hh, minute=current_mm)
                        e = datetime.datetime(year=start_year, month=1, day=2, hour=current_hh, minute=current_mm)
                        day_hours = [d.strftime("%H%M") for d in pd.date_range(s, e, freq="H")][1:-1]

                        date_con = np.insert(date_con, count + 1, [date_con[count]] * 23)
                        time_con = np.insert(time_con, count + 1, day_hours)
                        vals = np.insert(vals, count + 1, [vals[count]] * 23)

                        count += 24

                if file_res == "mo":
                    file_hours = len(date_con)
                    for i in range(file_hours):
                        current_year = int(date_con[count][:4])
                        current_month = int(date_con[count][4:6])

                        next_month = current_month + 1
                        if next_month > 12:
                            next_month = 1
                            next_year = current_year + 1
                        else:
                            next_year = current_year

                        s = datetime.datetime(year=current_year, month=current_month, day=1, hour=1, minute=0)
                        e = datetime.datetime(year=next_year, month=next_month, day=1, hour=0, minute=0)

                        day_date = [d.strftime("%Y%m%d") for d in pd.date_range(s, e, freq="H")][:-1]
                        day_hour = [d.strftime("%H%M") for d in pd.date_range(s, e, freq="H")][:-1]
                        date_con = np.insert(date_con, count + 1, day_date)
                        time_con = np.insert(time_con, count + 1, day_hour)
                        vals = np.insert(vals, count + 1, [vals[count]] * len(day_date))
                        count += len(day_date) + 1

                date_con = np.array(date_con).astype(int)
                time_con = np.array(time_con).astype(int)

                # create max possible o3 grid
                o3_data = np.empty(n_hours)
                o3_data[:] = -99999

                # delete dates,times and var outside date range
                val_test = (date_con >= int(output_res_dates_strings[0])) & (
                    date_con <= int(output_res_dates_strings[-1])
                )
                date_con = date_con[val_test]
                time_con = time_con[val_test]
                vals = vals[val_test]

                print date_con

                # find matching times between actual times and grid of times, return big array of indices of matched indices in grid
                converted_time = modules.date_process(date_con, time_con, start_year)
                converted_time = np.round(converted_time, decimals=5)
                syn_grid_time = np.arange(0, n_days, 1.0 / 24)
                syn_grid_time = np.round(syn_grid_time, decimals=5)
                # find matching times between actual times and grid of times, return big array of indices of matched indices in grid
                indices = np.searchsorted(syn_grid_time, converted_time, side="left")
                o3_data[indices] = vals

                # convert all Nans back to -99999
                test = np.isnan(o3_data)
                o3_data[test] = -99999

                # get mode of metadata
                lat = np.float64(stats.mode(all_lat)[0][0])
                lon = np.float64(stats.mode(all_lon)[0][0])
                alt = np.float64(stats.mode(all_alt)[0][0])
                st = stats.mode(all_st)[0][0]
                mm = stats.mode(all_mm)[0][0]

                # check site is not urban using anthrome map from 2000
                anthfile = "/work/home/db876/plotting_tools/core_tools/anthro2_a2000.nc"
                anthload = Dataset(anthfile)
                class_valid, anthrome_class_name = modules.anthrome_classify(anthload, [lat], [lon])
                if class_valid == "invalid":
                    data_valid = False
                    print "Site Invalid, site classed as urban by anthrome map."

                # get measurement type and sampling type (take mode from collected list)
                if (st == "continuous") or (
                    st == "continuous(carbondioxide),remotespectroscopicmethod(methaneandsurfaceozone)"
                ):
                    st = "average"
                elif st == "flask":
                    st = "flask"
                elif st == "filter":
                    st = "filter"
                else:
                    print st
                    1 + "a"

                if mm == "Lightabsorptionanalysis(UV)":
                    mm = "ultraviolet photometry"

                elif mm == "CavityRingdownSpectroscopy":
                    mm = "cavity ringdown spectroscopy"

                elif mm == "NDIR":
                    site_mm = "non-dispersive infrared spectroscopy"

                elif mm == "GasChromatography(FID)":
                    site_mm = "gas chromatography flame ionisation detection"

                elif mm == "Gas Chromatography (RGD)":
                    site_mm = "gas chromatography reduction gas detection"

                elif mm == "Chemiluminescence":
                    mm = "chemiluminescence"

                elif (mm == "Spectrophotometry") or (
                    mm == "spectrophotometry,naphthyl-ethylenediaminedihydrochloridemethod"
                ):
                    mm = "spectrophotometry"

                elif mm == "":
                    if species == "O3":
                        mm = "ultraviolet photometry"
                    if species == "CO":
                        mm = "non-dispersive infrared spectroscopy"
                    if species == "NO2":
                        mm = "chemiluminescence"
                    if species == "NO":
                        mm = "chemiluminescence"
                    if species == "ISOP":
                        mm = "gas chromatography flame ionisation detection"

                # do data quality checks
                full_data, data_valid = modules.quality_check(
                    o3_data, data_valid, data_resolution, alt, grid_dates, start_year, end_year
                )

                # convert file res to standard format
                if file_res == "hr":
                    file_res = "H"
                elif file_res == "da":
                    file_res = "D"
                elif file_res == "mo":
                    file_res = "M"

                # no raw class so set as na
                raw_class_name = "na"

                return c, full_data, data_valid, lat, lon, alt, raw_class_name, anthrome_class_name, mm, st, file_res
コード例 #3
0
def site_iter_process(valid_refs,c):
#for site_ref in valid_refs:
    data_valid = True
    site_ref = valid_refs[c]
    print 'ref = ',site_ref
    site_test = all_refs == site_ref
    
    site_yyyymmdd = yyyymmdd[site_test]
    site_hhmm = hhmm[site_test]
    site_vals = vals[site_test]
 
    #convert blank invalids to -99999
    test_inv = site_vals == ''
    site_vals[test_inv] = -99999
    
    site_vals = np.float64(site_vals)
    
    #convert number invalids to -99999
    test_inv = site_vals < 0
    site_vals[test_inv] = -99999
    
    #put vals into full grid
    date_con = np.array(site_yyyymmdd).astype(int)
    time_con = np.array(site_hhmm).astype(int)
    
    #create max possible o3 grid
    full_data = np.empty(n_hours)
    full_data[:] = -99999
    
    #find matching times between actual times and grid of times, return big array of indices of matched indices in grid
    converted_time = modules.date_process(date_con,time_con,start_year)
    converted_time = np.round(converted_time,decimals=5)
    
    syn_grid_time = np.arange(0,n_days,1./24)
    syn_grid_time = np.round(syn_grid_time,decimals=5)
    #find matching times between actual times and grid of times, return big array of indices of matched indices in grid
    indices = np.searchsorted(syn_grid_time, converted_time, side='left')
    site_vals = np.array(site_vals)
    full_data[indices] = site_vals
    
    meta_index = meta_refs.index(site_ref)
    tz = meta_tz[meta_index]
    lat = np.float64(meta_lats[meta_index])
    lon = np.float64(meta_lons[meta_index])
    alt = np.float64(meta_alts[meta_index])
    raw_class_name = meta_class[meta_index]
    anthrome_class_name = class_name[meta_index]
    
    #correct timezone to UTC
    if tz < 0:
        #get rid of values at start and append -99999's at end
        cut = full_data[:tz]
        for num in range(np.abs(tz)):
            cut = np.insert(cut,0, -99999)
        full_data = cut
    elif tz > 0:
        #put -99999's at start and get rid of values at end
        cut = full_data[tz:]
        for num in range(tz):
            cut = np.append(cut, -99999)
        full_data = cut
            
    #do data quality checks        
    full_data,data_valid = modules.quality_check(full_data,data_valid,data_resolution,alt,grid_dates,start_year,end_year)

    #set mm
    if species == 'O3':
        mm = 'ultraviolet photometry'
    elif (species == 'NO') or (species == 'NO2') or (species == 'CO'):
        mm = 'non-dispersive infrared absorption'
    
    #set sampling as average
    st = 'average'     
    
    #set site file resolution
    file_res = 'H'
    
    return c,full_data,data_valid,lat,lon,alt,raw_class_name,anthrome_class_name,mm,st,file_res
コード例 #4
0
def site_iter_process(valid_refs,c):
#read files site at a time
#for ref_i in range(len(valid_refs)):
    site_ref = valid_refs[c]

    all_latitudes = []
    all_longitudes = []
    all_altitudes = []
    all_mm = []

    print 'Current Ref is = ', site_ref
    #find if sites have full valid range from start year and finishing in end year
    s_files = glob.glob('/work/home/db876/observations/surface/%s/EMEP/%s*'%(species,site_ref))
    year_files = [file.replace("/work/home/db876/observations/surface/%s/EMEP/"%(species), "") for file in s_files]
    cut_year_files = [file[8:12] for file in year_files]
    site_files = []
    for y in year_array:
        for i in range(len(s_files)):
            if str(y) in cut_year_files[i]:
                site_files.append(s_files[i])
                  
    site_files = modules.natsorted(site_files)
    year_files = modules.natsorted(year_files)
  
    file_startdate = []
    file_height = []
    instr_names = []
    file_lasttime = []
    
    data_valid = True

    yyyymmdd = []
    hhmm = []
    vals = []
    flags = []

    #create max possible o3 grid
    full_data = np.empty(n_hours)
    full_data[:] = -99999

    if site_files == []:
        print 'No valid files for site\n'
        return
    
    for y in year_array:
    
        print 'Processing Year %s'%y 
        got_year = False
        for file in site_files:
            last_file_split = file.split('/')[-1]
            if str(y) in last_file_split[8:12]:
                got_year = True
                break
        if got_year == False:
            #fill in data for missing year
            timedelta_diff = datetime.date(y+1, 1, 1) - datetime.date(y, 1, 1)
            ndays_missing = timedelta_diff.days
            print 'ndays missing = ', ndays_missing        
            continue
    
        if data_valid == True:
            data_start = 9999999
            count = 0
            start_read = False
            with open(file, 'rb') as f:
                read_count = 0
                reader = csv.reader(f,delimiter=' ')
                print file
                for row in reader:
                    try:
                        row = filter(lambda a: a != '', row)
                    except:
                        pass
                    try:
                        row = filter(lambda a: a != ',', row)
                    except:
                        pass
                                    
                    #get start date of file
                    if row[0] == 'Startdate:':
                        data = row[1]
                        s_yyyy = data[:4]
                        s_mm = data[4:6]
                        s_dd = data[6:8]
                        s_hh = data[8:10]
                        s_min = data[10:12]


                        start_datetime = datetime.datetime(int(s_yyyy),1,1,0,0)
                    
                    #get unit
                    if row[0] == 'Unit:':
                        try:
                            unit_part1 = row[1]
                            unit_part2 = row[2]
                            unit = unit_part1+'_'+unit_part2
                        except:
                            unit = row[1]   
            
                    #get resolution
                    if row[0] == 'Resolution':
                        if row[1] == 'code:':
                            file_res = row[2]
                            print 'Resolution = %s'%file_res
                            if (output_res == 'H'):
                                if (file_res == '1d') or (file_res == '1mo'):
                                    print 'File resolution has to be Minimum Hourly. Skipping'
                                    data_valid = False
                                    return c,full_data,data_valid,-999,-999,-999,'na','na','na','na','na'
                            elif (output_res == 'D'):
                                if (file_res == '1mo'):
                                    print 'File resolution has to be Minimum Daily. Skipping'
                                    data_valid = False
                                    return c,full_data,data_valid,-999,-999,-999,'na','na','na','na','na'
                    #get latitude
                    if row[0] == 'Station':
                        if row[1] == 'latitude:':
                            latitude = row[2]
                            all_latitudes.append(latitude)
                
                    #get longitude
                    if row[0] == 'Station':
                        if row[1] == 'longitude:':
                            longitude = row[2]
                            all_longitudes.append(longitude)
                        
                    #get altitude
                    if row[0] == 'Station':
                        if row[1] == 'altitude:':
                            altitude = row[2][:-1]
                            all_altitudes.append(altitude)
                
                    #get period
                    if row[0] == 'Period':
                        period_code = row[2]
                    
                    #get stats method
                    if row[0] == 'Statistics:':
                        try:
                            st = row[1] + row[2]
                            if st != 'arithmeticmean':
                                print 'Not Arithmetic Mean!'
                                print row[1]
                                print 1+'a'  
                        except:
                            print 'Not Arithmetic Mean!'
                            print row[1]
                            print 1+'a'
                
                    #get instrument method
                    if row[0] == 'Instrument':
                        if row[1] == 'type:':
                            mm_list = row[2:]
                            if len(mm_list) > 1:
                                site_mm = ''
                                for x in range(len(mm_list)):
                                    site_mm = site_mm+mm_list[x]+' '
                                site_mm = site_mm.strip()
                            else:
                                site_mm = mm_list[0]
                            all_mm.append(site_mm)
                    
                    #get data
                    if start_read == True:
                        #calc dates, times, and take o3 vals

                        time_since_start = np.float64(row[0])
                        days_since_start = math.trunc(time_since_start)
                        remainder = time_since_start - days_since_start
                        unrounded_hour = remainder*24
                        hour = np.round(unrounded_hour)
                        time_delta = datetime.timedelta(days = days_since_start,hours = hour)
                        calc_datetime = start_datetime + time_delta
                        calc_yyyymmdd = calc_datetime.strftime("%Y%m%d") 
                        calc_hhmm = calc_datetime.strftime("%H%M")        
                            
                        line_val = np.float64(row[2])
                    
                        #convert units by line (only if value is >= than 0
                        if line_val >= 0:
                            if (unit.lower() != 'ppb') & (unit.lower() != 'ppbv'):
                                if unit == 'ug/m3':
                                    #print 'converting units, temp = 20degC'
                                    #calculate conversion factor from mg/m3 assuming 20 degC and 1 atm - default for O3 instruments
                                    #R/MW*(TEMP0C(K)*TEMP(degC)/P(hPa)/10
                                    conv_fact = 8.3144/mol_mass*(273.15+20)/(1013.25/10)
                                    line_val = conv_fact*line_val
                                    #print 'Converting Units from ug/m3 20degC to ppbv'
                                elif unit == 'ug_N/m3':
                                    conv_fact = 8.3144/mol_mass*(273.15+20)/(1013.25/10)
                                    line_val = conv_fact*line_val
                                    #print 'Converting Units from ug/Nm3 20degC to ppbv' 
                                elif (unit == 'ppm') or (unit == 'ppmv'):
                                    line_val = line_val*1e3
                                    #print 'Converting Units from ppmv to ppbv'
                                elif (unit == 'ppt') or (unit == 'pptv'):
                                    line_val = line_val/1e3
                                    #print 'Converting Units from pptv to ppbv'
                                else:
                                    print 'Unknown Unit'
                                    data_valid = False
                                    1+'a'
                       
                        if file_res == '1h':
                            yyyymmdd=np.append(yyyymmdd,calc_yyyymmdd)
                            hhmm=np.append(hhmm,calc_hhmm)
                            vals = np.append(vals,line_val)
                            flags = np.append(flags,np.float64(row[3]))
                    
                        elif file_res == '1d':
                            yyyymmdd=np.append(yyyymmdd,calc_yyyymmdd)
                            hhmm=np.append(hhmm,'0000')
                            vals = np.append(vals,line_val)
                            flags = np.append(flags,np.float64(row[3]))
                        
                            for j in range(1,24):
                                time_delta = datetime.timedelta(days = days_since_start,hours = j)
                                calc_datetime = start_datetime + time_delta 
                                vals = np.append(vals,vals[-1])
                                flags = np.append(flags,flags[-1])
                                yyyymmdd = np.append(yyyymmdd,calc_datetime.strftime("%Y%m%d"))
                                hhmm = np.append(hhmm,calc_datetime.strftime("%H%M"))
                        
                        elif file_res == '1mo':
                            yyyymmdd=np.append(yyyymmdd,calc_yyyymmdd)
                            hhmm=np.append(hhmm,'0000')
                            vals = np.append(vals,line_val)
                            flags = np.append(flags,np.float64(row[3]))
                        
                            month_days = monthrange(int(yyyymmdd[-1][:4]), int(yyyymmdd[-1][4:6]))[1]
                            for j in range(1,24*month_days):
                                time_delta = datetime.timedelta(days = days_since_start,hours = j)
                                calc_datetime = start_datetime + time_delta
                                vals = np.append(vals,vals[-1])
                                flags = np.append(flags,flags[-1])
                                yyyymmdd = np.append(yyyymmdd,calc_datetime.strftime("%Y%m%d"))
                                hhmm = np.append(hhmm,calc_datetime.strftime("%H%M"))
        
                    if row[0] == 'starttime':
                        start_read = True
                
                    count+=1
                
    if (y == year_array[-1]):    
            
        #convert all invalids by flags to -99999
        test_inv = flags != 0
        if len(test_inv) != 0:
            vals[test_inv] = -99999
        
        #any values less than zero are -99999
        test_inv = vals < 0
        if len(test_inv) != 0:
            vals[test_inv] = -99999
        
        #do additional invalid test, as flags not always correct
        #test_inv_2 = vals > 300
        #vals[test_inv_2] = -99999

        #put o3 vals into full grid
        date_con = np.array(yyyymmdd).astype(int)
        time_con = np.array(hhmm).astype(int)
        
        #find matching times between actual times and grid of times, return big array of indices of matched indices in grid
        converted_time = date_process(date_con,time_con,start_year)
        converted_time = np.round(converted_time,decimals=5)
        syn_grid_time = np.arange(0,n_days,1./24)
        syn_grid_time = np.round(syn_grid_time,decimals=5)
        #find matching times between actual times and grid of times, return big array of indices of matched indices in grid
    
        indices = np.searchsorted(syn_grid_time, converted_time, side='left')
        vals = np.array(vals)
        #make sure no data is past end year
        index_test = indices < len(full_data)
        indices = indices[index_test]
        vals = vals[index_test]
        full_data[indices] = vals
    
    #get mode of metadata
    lat = np.float64(stats.mode(all_latitudes)[0][0]) 
    lon = np.float64(stats.mode(all_longitudes)[0][0])  
    alt = np.float64(stats.mode(all_altitudes)[0][0]) 
    mm = stats.mode(all_mm)[0][0]
    
    #check site is not urban using anthrome map from 2000
    anthfile = '/work/home/db876/plotting_tools/core_tools/anthro2_a2000.nc'
    anthload = Dataset(anthfile)
    class_valid,anthrome_class_name = modules.anthrome_classify(anthload,[lat],[lon])
    if class_valid == 'invalid':
        data_valid = False
        print 'Site Invalid, site classed as urban by anthrome map.'
    
    #get measurement method
    if (mm == 'uv_abs') or (mm == 'chemiluminesc') or (mm == 'uv_fluoresc'):
        if species == 'O3':
            mm = 'ultraviolet photometry'
        if (species == 'NO') or (species == 'NO2') or (species == 'CO'):
            mm = 'chemiluminescence'
        
    elif (mm == 'ndir') or (mm == 'infrared_absorption'):
        mm = 'non-dispersive infrared spectroscopy'
        
    elif (mm == 'GC-HgO'):
        mm = 'gas chromatography reduction gas detection'
    
    elif (mm == 'tracegas_monitor'):
        mm = 'cavity attenuated phase shift spectroscopy'
    
    elif (mm == 'filter_1pack') or (mm == 'filter_2pack') or (mm == 'filter_3pack'):
        if species == 'NO2':
            mm = 'griess saltzman colorimetric'
        elif species == 'CO':
            mm = 'ion chromatography'
        
    elif (mm == 'steel_canister'):
        mm = 'gas chromatography flame ionisation detection'
        
    elif (mm == 'online_gc'):
        mm = 'online gas chromatography'
    
    elif (mm == 'glass_sinter') or (mm == 'abs_solution') or (mm == 'filter_abs_solution') or (mm == 'abs_tube') or (mm == 'continuous_colorimetric'):
        mm = 'griess saltzman colorimetric'
        
    elif (mm == 'NaJ_solution'):
        mm = 'flame ionisation detection'
        
    elif (mm == 'doas'):
        mm = 'differential optical absorption spectrosocopy'
    
    elif (mm == 'diffusion_tube'):
        mm = 'diffusive sampler'
    
    elif (mm == 'NA') or (mm == ''):
        if species == 'O3':
            mm = 'ultraviolet photometry'
        if species == 'CO':
            mm = 'non-dispersive infrared spectroscopy'
        if species == 'NO2':
            mm = 'chemiluminescence'
        if species == 'NO':
            mm = 'chemiluminescence'
        if species == 'ISOP':
            mm = 'gas chromatography flame ionisation detection'
        
    else:
        print mm
        1+'a'
    
    #do data quality checks        
    full_data,data_valid = modules.quality_check(full_data,data_valid,data_resolution,alt,grid_dates,start_year,end_year)

    #convert file res to standard format
    if file_res == '1h':
        file_res = 'H'
    elif file_res == '1d':
        file_res = 'D'
    elif file_res == '1mo':
        file_res = 'M'

    #no raw class so set as na
    raw_class_name = 'na'
    
    #set sampling as average
    st = 'average'

    return c,full_data,data_valid,lat,lon,alt,raw_class_name,anthrome_class_name,mm,st,file_res
コード例 #5
0
def site_iter_process(valid_refs,c):
#for site_ref in valid_refs:
    site_ref = valid_refs[c]
 
    data_valid = True
    print 'ref = ',site_ref
    site_test = all_refs == site_ref
    
    site_yyyymmdd = yyyymmdd[site_test]
    site_hhmm = hhmm[site_test]
    site_vals = vals[site_test]
    
    site_vals = np.float64(site_vals)
 
    #convert all invalids to -99999
    test_inv = site_vals < 0
    site_vals[test_inv] = -99999

    #put vals into full grid
    date_con = np.array(site_yyyymmdd).astype(int)
    time_con = np.array(site_hhmm).astype(int)
    
    #create max possible o3 grid
    full_data = np.empty(n_hours)
    full_data[:] = -99999
    
    #find matching times between actual times and grid of times, return big array of indices of matched indices in grid
    converted_time = modules.date_process(date_con,time_con,start_year)
    converted_time = np.round(converted_time,decimals=5)
    syn_grid_time = np.arange(0,n_days,1./24)
    syn_grid_time = np.round(syn_grid_time,decimals=5)
    #find matching times between actual times and grid of times, return big array of indices of matched indices in grid
    indices = np.searchsorted(syn_grid_time, converted_time, side='left')
    site_vals = np.array(site_vals)
    full_data[indices] = site_vals
    
    meta_index = meta_refs.index(site_ref)
    tz = float(meta_tz[meta_index])
    lat = np.float64(meta_lats[meta_index])
    lon = np.float64(meta_lons[meta_index])
    alt = np.float64(meta_alts[meta_index])
    raw_class_name = meta_class[meta_index]
    anthrome_class_name = class_name[meta_index]
        
    #check tz is whole number else skip site
    if (tz % 1) != 0:
        data_valid = False
        print 'Timezone is not a whole number. Skipping.'
        
    #correct timezone to UTC
    tz = int(tz)
    if tz < 0:
        #get rid of values at start and append -99999's at end
        cut = full_data[:tz]
        for num in range(np.abs(tz)):
            cut = np.insert(cut,0, -99999)
        full_data = cut
    elif tz > 0:
        #put -99999's at start and get rid of values at end
        cut = full_data[tz:]
        for num in range(tz):
            cut = np.append(cut, -99999)
        full_data = cut
            
    #if species is CO then convert units from ppmv to ppbv
    if species == 'CO':
        valid_inds = full_data != -99999 
        full_data[valid_inds] = full_data[valid_inds]*1e3        
    
    #do data quality checks        
    full_data,data_valid = modules.quality_check(full_data,data_valid,data_resolution,alt,grid_dates,start_year,end_year)
    
    #set sampling as average
    if (species == 'O3') or (species == 'CO') or(species == 'NO') or (species == 'NO2'):
        st = 'average'
    elif (species == 'ISOP'):
        st = 'flask'   
    
    #set site file resolution
    if (species == 'O3') or (species == 'CO') or(species == 'NO') or (species == 'NO2'):
        file_res = 'H'
    elif (species == 'ISOP'):
        file_res = 'D'
    
    #check file res is ok for output res
    if (output_res == 'H'):
        if (file_res == 'D') or (file_res == 'M'):
            print 'File resolution has to be Minimum Hourly. Skipping'
            data_valid = False
            return c,full_data,data_valid,-999,-999,-999,'na','na','na','na','na'
    elif (output_res == 'D'):
        if (file_res == 'M'):
            print 'File resolution has to be Minimum Daily. Skipping'
            data_valid = False
            return c,full_data,data_valid,-999,-999,-999,'na','na','na','na','na'
    
    #set mm
    if species == 'O3':
        mm = 'ultraviolet photometry'
    elif (species == 'NO') or (species == 'NO2'):
        mm = 'chemiluminescence'
    elif species == 'CO':
        mm = 'non-dispersive infrared spectrometry'
    elif species == 'ISOP':
        mm = 'gas chromatography flame ionisation detection'
        
        
    return c,full_data,data_valid,lat,lon,alt,raw_class_name,anthrome_class_name,mm,st,file_res
コード例 #6
0
def site_iter_process(valid_refs,c):
#for ref_i in range(len(valid_refs)):
    data_valid = True

    site_ref = valid_refs[c]
    print 'Current Ref is = ', site_ref

    s_files = glob.glob('/work/home/db876/observations/surface/%s/CAPMON/ozon_smpls_%s*'%(species,site_ref))
    site_files = []
    for y in year_array:
        for f in s_files:
            if str(y) in f:
                site_files.append(f)
                           

    site_files = modules.natsorted(site_files)

    yymmdd = []
    hhmm = []
    vals = []

    #create max possible o3 grid
    full_data = np.empty(n_hours)
    full_data[:] = -99999

    for file_i in range(len(site_files)):

        count = 0
        meta_start = -99999
        start_read_1 = False
        start_read_2 = False

        with open(site_files[file_i], 'rb') as f:
            reader = csv.reader(f,delimiter=',')
            print site_files[file_i]
            for row in reader:
                #print count
               #break out of loop at bottom of file
                if (start_read_2 == True) & (row[0] == '*TABLE ENDS'):
                    break
               
               #get metadata
                try:
                    if (row[0] =='*TABLE NAME') & (row[1] == 'Site information'):
                        meta_start = count+2
                except:
                    pass
                if count == meta_start:
                    lat_i = row.index('Latitude: decimal degrees')
                    lon_i = row.index('Longitude: decimal degrees')
                    try:
                        alt_i = row.index('Ground elevation: above mean sea level')
                    except:
                        alt_i = row.index('Ground altitude')
                    class_i = row.index('Site land use')
                
                if count == (meta_start+6):
                    latitude = row[lat_i]
                    longitude = row[lon_i]
                    altitude = row[alt_i]
                    raw_class_name = row[class_i]
                      
                #get data
                if start_read_2 == True:
                    #read dates, times, and vals
                    date = row[8]
                    time = row[9]
                    yymmdd.append(date[:4]+date[5:7] + date[8:])
                    hhmm.append(time[:2]+time[3:])
                    quality_code = row[13]
                    if quality_code == 'V0':
                        vals = np.append(vals,np.float64(row[12]))
                    else:
                        vals = np.append(vals,-99999)
                    
                try:
                    if (row[0] == '*TABLE NAME') & (row[1] == 'OZONE_HOURLY'):
                        start_read_1 = True
                except:
                    pass
                   
                if (start_read_1 == True) & (row[0] == '*TABLE COLUMN UNITS'):
                    unit = row[12]
                
                if (start_read_1 == True) & (row[0] == '*TABLE BEGINS'):
                    start_read_2 = True
                count+=1

    #convert all invalids to -99999
    test_inv = vals < 0
    vals[test_inv] = -99999

    #put o3 vals into full grid
    date_con = np.array(yymmdd).astype(int)
    time_con = np.array(hhmm).astype(int)
    
    #find matching times between actual times and grid of times, return big array of indices of matched indices in grid
    converted_time = modules.date_process(date_con,time_con,start_year)
    converted_time = np.round(converted_time,decimals=5)
    syn_grid_time = np.arange(0,n_days,1./24)
    syn_grid_time = np.round(syn_grid_time,decimals=5)
    #find matching times between actual times and grid of times, return big array of indices of matched indices in grid
    indices = np.searchsorted(syn_grid_time, converted_time, side='left')
    vals = np.array(vals)
    #make sure no data is past end year
    index_test = indices < len(full_data)
    indices = indices[index_test]
    vals = vals[index_test]
    full_data[indices] = vals
    
    
    #get metadata
    lat = np.float64(latitude)
    lon = np.float64(longitude)
    alt = np.float64(altitude)
        
    #check site is valid by class
    if ('Urban' in raw_class_name) or ('urban' in raw_class_name):
        data_valid=False
        print 'Data is invalid. Raw Class is Urban.'
    
    #check site is not urban using anthrome map from 2000
    anthfile = '/work/home/db876/plotting_tools/core_tools/anthro2_a2000.nc'
    anthload = Dataset(anthfile)
    class_result,anthrome_class_name = modules.anthrome_classify(anthload,[lat],[lon])
    if class_result == 'invalid':
        data_valid = False
        print 'Site Invalid, site classed as urban by anthrome map.'
        
    #do data quality checks
    full_data,data_valid = modules.quality_check(full_data,data_valid,data_resolution,np.float64(altitude),grid_dates,start_year,end_year)
    
    #set measurement method
    mm = 'ultraviolet photometry'
    
    #set site file resolution
    file_res = 'H'
    
    #set sampling as average
    st = 'average'
    
    return c,full_data,data_valid,lat,lon,alt,raw_class_name,anthrome_class_name,mm,st,file_res
コード例 #7
0
def site_iter_process(valid_refs, c):
    #process data for each site at a time
    #for site_ref in valid_refs:
    site_ref = valid_refs[c]
    data_valid = True
    print 'ref = ', site_ref
    site_test = all_refs == site_ref

    site_yyyymmdd = yyyymmdd[site_test]
    site_hhmm = hhmm[site_test]
    site_vals = vals[site_test]
    site_mm = all_mm[site_test]
    site_units = units[site_test]

    if species == 'ISOP':
        site_sample_len = sample_len[site_test]

    #check for data below limit of detection (only for ISOP) as other species have LOD check by line in file. If it is change to -99999
    #LOD for ISOP if 0.01 ppbv
    if species == 'ISOP':
        lod_test = site_vals < 0.01

    #convert from ppm to ppb
    if (species == 'O3') or (species == 'NO') or (species == 'NO2'):
        for i in range(len(site_vals)):
            if site_units[i] == 'Parts per million':
                site_vals[i] = site_vals[i] * 1.e3
            elif site_units[i] == 'Parts per billion':
                pass
            else:
                print site_units[i]
                1 + 'a'

    # convert from ppbC to ppb
    if species == 'ISOP':
        for i in range(len(site_vals)):
            #078 is Parts per billion Carbon, Isoprene has 5 Carbons
            if site_units[i] == '078':
                site_vals[i] = site_vals[i] / 5.
            #008 is Parts per billion
            if site_units[i] == '008':
                pass
            #101 is Parts per million Carbon
            if site_units[i] == '101':
                site_vals[i] = (site_vals[i] / 5.) * 1.e3

        site_vals[lod_test] = -99999

    #put vals into full grid
    date_con = np.array(site_yyyymmdd).astype(int)
    time_con = np.array(site_hhmm).astype(int)

    #create max possible o3 grid
    full_data = np.empty(n_hours)
    full_data[:] = -99999

    #find matching times between actual times and grid of times, return big array of indices of matched indices in grid
    converted_time = modules.date_process(date_con, time_con, start_year)
    converted_time = np.round(converted_time, decimals=5)

    syn_grid_time = np.arange(0, n_days, 1. / 24)
    syn_grid_time = np.round(syn_grid_time, decimals=5)
    #find matching times between actual times and grid of times, return big array of indices of matched indices in grid
    indices = np.searchsorted(syn_grid_time, converted_time, side='left')
    site_vals = np.array(site_vals)

    #if date goes past where it should finish, omit it.
    inv_i = indices < len(full_data)
    indices = indices[inv_i]
    site_vals = site_vals[inv_i]

    full_data[indices] = site_vals

    #get site meta
    meta_index = meta_refs.index(site_ref)
    lat = np.float64(meta_lats[meta_index])
    lon = np.float64(meta_lons[meta_index])
    alt = np.float64(meta_alts[meta_index])
    raw_class_name = meta_class[meta_index]
    anthrome_class_name = class_name[meta_index]

    #get measurement method, take mode of big methods array
    site_mm = stats.mode(site_mm)[0][0]
    if (site_mm.upper() == 'INSTRUMENTAL-ULTRAVIOLETABSORPTION') or (
            site_mm.upper() == 'INSTRUMENTAL-ULTRAVIOLET2BMODEL202'
    ) or (site_mm.upper() == 'INSTRUMENTAL-UVPHOTOMETRIC') or (
            site_mm.upper() == 'INSTRUMENTAL-ULTRAVIOLETRADIATIONABSORBTN'
    ) or (site_mm.upper() == 'INSTRUMENTAL-ULTRAVIOLET') or (
            site_mm.upper() == 'INSTRUMENTAL-ULTRAVIOLETPHOTOMETRY') or (
                site_mm.upper() ==
                'INSTRUMENTAL-UVABSORPTIONPHOTOMETRY/UV2BMODEL202AND205') or (
                    site_mm.upper() == 'INSTRUMENTAL-ECOTECHSERINUS10'):
        mm = 'ultraviolet photometry'

    elif (site_mm.upper() == 'INSTRUMENTAL-CHEMILUMINESCENCE') or (
            site_mm.upper() == 'INSTRUMENTAL-GASPHASECHEMILUMINESCENCE'
    ) or (site_mm.upper(
    ) == 'INSTRUMENTAL-CHEMILUMINESCENCEAPIMODEL265EANDT265') or (
            site_mm.upper() ==
            'LOWLEVELNOXINSTRUMENTAL-TECO42SCHEMILUMINESCENCE'
    ) or (site_mm.upper() == 'INSTRUMENTAL-GAS-PHASECHEMILUMINESCENCE') or (
            site_mm.upper() ==
            'INSTRUMENTAL-CHEMILUMINESCENCETELEDYNEAPIT200UPPHOTOLYTIC'
    ) or (site_mm.upper(
    ) == 'INSTRUMENTAL-CHEMILUMINESCENCETELEDYNEAPI200EU/501') or (
            site_mm.upper() == 'INSTRUMENTAL-CHEMILUMINESCENCEECOTECHEC9841T'
    ) or (site_mm.upper(
    ) == 'TELEDYNE-APIMODEL200EUPORT200UP-PHOTOLYTIC-CHEMILUMINESCENCE') or (
            site_mm.upper() ==
            'INSTRUMENTAL-CHEMILUMINESCENCETHERMOELECTRON42C-TL,42I-TL'
    ) or (site_mm.upper(
    ) == 'INSTRUMENTAL-CHEMILUMINESCENCERHODAMINEBDYE') or (site_mm.upper(
    ) == 'INSTRUMENTAL-CHEMILUMINESCENCETHERMOELECTRON42C-Y,42I-Y') or (
            site_mm.upper() == 'INSTRUMENTAL-CHEMILUMINESCENCEECOTECHEC9843'):
        mm = 'chemiluminescence'

    elif (site_mm.upper() == 'INSTRUMENTAL-OPENPATHO3ANALYZER') or (
            site_mm.upper() == 'INSTRUMENTAL-OPENPATHNOANALYZER'):
        mm = 'differential optical absorption spectrosocopy'

    elif (site_mm.upper() ==
          'TELEDYNEMODELT500U-CAVITYATTENUATEDPHASESHIFTSPECTROSCOPY'):
        mm = 'cavity attenuated phase shift spectroscopy'

    elif (site_mm.upper() == 'INSTRUMENTAL-COLORIMETRIC-GRIESS-SALTZMAN') or (
            site_mm.upper() == 'INSTRUMENTAL-COLORIMETRIC'):
        mm = 'griess saltzman colorimetric'

    elif (site_mm.upper() == 'INSTRUMENTAL-COLORIMETRIC-LYSHKOW(MOD)'):
        mm = 'lyshkow colorimetric '

    elif (site_mm.upper() == 'INSTRUMENTAL-COULOMETRIC'):
        mm = 'coulometry'

    else:
        print site_mm.upper()
        1 + 'a'

    #do data quality checks
    full_data, data_valid = modules.quality_check(
        full_data, data_valid, data_resolution, alt, grid_dates, start_year,
        end_year)

    #set site file resolution
    file_res = 'H'

    #set sampling as average
    st = 'average'

    return c, full_data, data_valid, lat, lon, alt, raw_class_name, anthrome_class_name, mm, st, file_res