eval_pts = inner_search_domain.generate_uniform_random_points_in_domain(int(1e3)) eval_pts = np.reshape( np.append( eval_pts, (cpp_gp_loglikelihood.get_historical_data_copy()).points_sampled[ :, : (cpp_gp_loglikelihood.dim - objective_func._num_fidelity) ], ), ( eval_pts.shape[0] + cpp_gp_loglikelihood._num_sampled, cpp_gp_loglikelihood.dim - objective_func._num_fidelity, ), ) test = np.zeros(eval_pts.shape[0]) ps = PosteriorMeanMCMC(cpp_gp_loglikelihood.models, num_fidelity) for i, pt in enumerate(eval_pts): ps.set_current_point( pt.reshape((1, cpp_gp_loglikelihood.dim - objective_func._num_fidelity)) ) test[i] = -ps.compute_objective_function() report_point = eval_pts[np.argmin(test)].reshape( (1, cpp_gp_loglikelihood.dim - objective_func._num_fidelity) ) py_repeated_search_domain = RepeatedDomain(num_repeats=1, domain=inner_search_domain) ps_mean_opt = pyGradientDescentOptimizer( py_repeated_search_domain, ps, py_sgd_params_ps ) report_point = multistart_optimize(ps_mean_opt, report_point, num_multistarts=1)[0] report_point = report_point.ravel()