コード例 #1
0
def evaluate(data):
    sum_err = 0.0
    for it in xrange(0, len(data), batch_size):
        batch = data[it:it + batch_size]
        if len(batch) < batch_size:
            batch.extend(data[0:batch_size - len(batch)])
        src_batch, label_batch = zip(*batch)
        src_tuple = smiles2graph_list(src_batch)

        feed_map = {x: y for x, y in zip(src_holder, src_tuple)}
        feed_map.update({label: label_batch})
        err = session.run(loss, feed_dict=feed_map)
        sum_err += err
    return math.sqrt(sum_err / len(data))
コード例 #2
0
        buckets.pop(i)

sum_err, sum_gnorm = 0.0, 0.0
it = 0
_lr = 0.001
while True:
    it += batch_size
    batch = []
    for i in xrange(batch_size):
        buk = random.choice(buckets)
        idx = buk.popleft()
        batch.append(train[idx])
        buk.append(idx)

    src_batch, label_batch = zip(*batch)
    src_tuple = smiles2graph_list(src_batch)

    feed_map = {x: y for x, y in zip(src_holder, src_tuple)}
    feed_map.update({label: label_batch, lr: _lr})
    _, err, pnorm, gnorm = session.run([backprop, loss, param_norm, grad_norm],
                                       feed_dict=feed_map)
    sum_err += err
    sum_gnorm += gnorm

    if it % 200 == 0 and it > 0:
        rmse = math.sqrt(sum_err / 200)
        print "Training RMSE: %.4f, Param Norm: %.2f, Grad Norm: %.2f" % (
            rmse, pnorm, sum_gnorm / 200)
        sys.stdout.flush()
        sum_err, sum_gnorm = 0.0, 0.0
    if it % 100000 == 0 and it > 0: