def test_shape(self, input_param, input_data, expected_shape): net = DynUNet(**input_param) net.eval() with torch.no_grad(): result = net(input_data) self.assertEqual(result.shape, expected_shape)
def test_shape(self, input_param, input_shape, expected_shape): net = DynUNet(**input_param).to(device) net.eval() with torch.no_grad(): result = net(torch.randn(input_shape).to(device)) self.assertEqual(result.shape, expected_shape)