コード例 #1
0
 def test_shape(self, input_param, input_shape, expected_shape):
     net = SegResNet(**input_param)
     net.eval()
     with torch.no_grad():
         result = net(torch.randn(input_shape))
         self.assertEqual(result.shape, expected_shape)
コード例 #2
0
 def test_ill_arg(self):
     with self.assertRaises(AssertionError):
         SegResNet(spatial_dims=4)
コード例 #3
0
def main_worker(args):
    # disable logging for processes except 0 on every node
    if args.local_rank != 0:
        f = open(os.devnull, "w")
        sys.stdout = sys.stderr = f
    if not os.path.exists(args.dir):
        raise FileNotFoundError(f"Missing directory {args.dir}")

    # initialize the distributed training process, every GPU runs in a process
    dist.init_process_group(backend="nccl", init_method="env://")

    total_start = time.time()
    train_transforms = Compose([
        # load 4 Nifti images and stack them together
        LoadNiftid(keys=["image", "label"]),
        AsChannelFirstd(keys="image"),
        ConvertToMultiChannelBasedOnBratsClassesd(keys="label"),
        Spacingd(keys=["image", "label"],
                 pixdim=(1.5, 1.5, 2.0),
                 mode=("bilinear", "nearest")),
        Orientationd(keys=["image", "label"], axcodes="RAS"),
        RandSpatialCropd(keys=["image", "label"],
                         roi_size=[128, 128, 64],
                         random_size=False),
        NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True),
        RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=0),
        RandScaleIntensityd(keys="image", factors=0.1, prob=0.5),
        RandShiftIntensityd(keys="image", offsets=0.1, prob=0.5),
        ToTensord(keys=["image", "label"]),
    ])

    # create a training data loader
    train_ds = BratsCacheDataset(
        root_dir=args.dir,
        transform=train_transforms,
        section="training",
        num_workers=4,
        cache_rate=args.cache_rate,
        shuffle=True,
    )
    train_loader = DataLoader(train_ds,
                              batch_size=args.batch_size,
                              shuffle=True,
                              num_workers=args.workers,
                              pin_memory=True)

    # validation transforms and dataset
    val_transforms = Compose([
        LoadNiftid(keys=["image", "label"]),
        AsChannelFirstd(keys="image"),
        ConvertToMultiChannelBasedOnBratsClassesd(keys="label"),
        Spacingd(keys=["image", "label"],
                 pixdim=(1.5, 1.5, 2.0),
                 mode=("bilinear", "nearest")),
        Orientationd(keys=["image", "label"], axcodes="RAS"),
        CenterSpatialCropd(keys=["image", "label"], roi_size=[128, 128, 64]),
        NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True),
        ToTensord(keys=["image", "label"]),
    ])
    val_ds = BratsCacheDataset(
        root_dir=args.dir,
        transform=val_transforms,
        section="validation",
        num_workers=4,
        cache_rate=args.cache_rate,
        shuffle=False,
    )
    val_loader = DataLoader(val_ds,
                            batch_size=args.batch_size,
                            shuffle=False,
                            num_workers=args.workers,
                            pin_memory=True)

    if dist.get_rank() == 0:
        # Logging for TensorBoard
        writer = SummaryWriter(log_dir=args.log_dir)

    # create UNet, DiceLoss and Adam optimizer
    device = torch.device(f"cuda:{args.local_rank}")
    if args.network == "UNet":
        model = UNet(
            dimensions=3,
            in_channels=4,
            out_channels=3,
            channels=(16, 32, 64, 128, 256),
            strides=(2, 2, 2, 2),
            num_res_units=2,
        ).to(device)
    else:
        model = SegResNet(in_channels=4,
                          out_channels=3,
                          init_filters=16,
                          dropout_prob=0.2).to(device)
    loss_function = DiceLoss(to_onehot_y=False,
                             sigmoid=True,
                             squared_pred=True)
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.lr,
                                 weight_decay=1e-5,
                                 amsgrad=True)
    # wrap the model with DistributedDataParallel module
    model = DistributedDataParallel(model, device_ids=[args.local_rank])

    # start a typical PyTorch training
    total_epoch = args.epochs
    best_metric = -1000000
    best_metric_epoch = -1
    epoch_time = AverageMeter("Time", ":6.3f")
    progress = ProgressMeter(total_epoch, [epoch_time], prefix="Epoch: ")
    end = time.time()
    print(f"Time elapsed before training: {end-total_start}")
    for epoch in range(total_epoch):

        train_loss = train(train_loader, model, loss_function, optimizer,
                           epoch, args, device)
        epoch_time.update(time.time() - end)

        if epoch % args.print_freq == 0:
            progress.display(epoch)

        if dist.get_rank() == 0:
            writer.add_scalar("Loss/train", train_loss, epoch)

        if (epoch + 1) % args.val_interval == 0:
            metric, metric_tc, metric_wt, metric_et = evaluate(
                model, val_loader, device)

            if dist.get_rank() == 0:
                writer.add_scalar("Mean Dice/val", metric, epoch)
                writer.add_scalar("Mean Dice TC/val", metric_tc, epoch)
                writer.add_scalar("Mean Dice WT/val", metric_wt, epoch)
                writer.add_scalar("Mean Dice ET/val", metric_et, epoch)
                if metric > best_metric:
                    best_metric = metric
                    best_metric_epoch = epoch + 1
                print(
                    f"current epoch: {epoch + 1} current mean dice: {metric:.4f}"
                    f" tc: {metric_tc:.4f} wt: {metric_wt:.4f} et: {metric_et:.4f}"
                    f"\nbest mean dice: {best_metric:.4f} at epoch: {best_metric_epoch}"
                )
        end = time.time()
        print(f"Time elapsed after epoch {epoch + 1} is {end - total_start}")

    if dist.get_rank() == 0:
        print(
            f"train completed, best_metric: {best_metric:.4f}  at epoch: {best_metric_epoch}"
        )
        # all processes should see same parameters as they all start from same
        # random parameters and gradients are synchronized in backward passes,
        # therefore, saving it in one process is sufficient
        torch.save(model.state_dict(), "final_model.pth")
        writer.flush()
    dist.destroy_process_group()
コード例 #4
0
 def test_script(self):
     input_param, input_shape, expected_shape = TEST_CASE_SEGRESNET[0]
     net = SegResNet(**input_param)
     test_data = torch.randn(input_shape)
     out_orig, out_reloaded = test_script_save(net, test_data)
     assert torch.allclose(out_orig, out_reloaded)
コード例 #5
0
def main_worker(args):
    # disable logging for processes except 0 on every node
    if args.local_rank != 0:
        f = open(os.devnull, "w")
        sys.stdout = sys.stderr = f
    if not os.path.exists(args.dir):
        raise FileNotFoundError(f"missing directory {args.dir}")

    # initialize the distributed training process, every GPU runs in a process
    dist.init_process_group(backend="nccl", init_method="env://")
    device = torch.device(f"cuda:{args.local_rank}")
    torch.cuda.set_device(device)
    # use amp to accelerate training
    scaler = torch.cuda.amp.GradScaler()
    torch.backends.cudnn.benchmark = True

    total_start = time.time()
    train_transforms = Compose([
        # load 4 Nifti images and stack them together
        LoadImaged(keys=["image", "label"]),
        EnsureChannelFirstd(keys="image"),
        ConvertToMultiChannelBasedOnBratsClassesd(keys="label"),
        Orientationd(keys=["image", "label"], axcodes="RAS"),
        Spacingd(
            keys=["image", "label"],
            pixdim=(1.0, 1.0, 1.0),
            mode=("bilinear", "nearest"),
        ),
        EnsureTyped(keys=["image", "label"]),
        ToDeviced(keys=["image", "label"], device=device),
        RandSpatialCropd(keys=["image", "label"],
                         roi_size=[224, 224, 144],
                         random_size=False),
        RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=0),
        RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=1),
        RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=2),
        NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True),
        RandScaleIntensityd(keys="image", factors=0.1, prob=0.5),
        RandShiftIntensityd(keys="image", offsets=0.1, prob=0.5),
    ])

    # create a training data loader
    train_ds = BratsCacheDataset(
        root_dir=args.dir,
        transform=train_transforms,
        section="training",
        num_workers=4,
        cache_rate=args.cache_rate,
        shuffle=True,
    )
    # ThreadDataLoader can be faster if no IO operations when caching all the data in memory
    train_loader = ThreadDataLoader(train_ds,
                                    num_workers=0,
                                    batch_size=args.batch_size,
                                    shuffle=True)

    # validation transforms and dataset
    val_transforms = Compose([
        LoadImaged(keys=["image", "label"]),
        EnsureChannelFirstd(keys="image"),
        ConvertToMultiChannelBasedOnBratsClassesd(keys="label"),
        Orientationd(keys=["image", "label"], axcodes="RAS"),
        Spacingd(
            keys=["image", "label"],
            pixdim=(1.0, 1.0, 1.0),
            mode=("bilinear", "nearest"),
        ),
        NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True),
        EnsureTyped(keys=["image", "label"]),
        ToDeviced(keys=["image", "label"], device=device),
    ])
    val_ds = BratsCacheDataset(
        root_dir=args.dir,
        transform=val_transforms,
        section="validation",
        num_workers=4,
        cache_rate=args.cache_rate,
        shuffle=False,
    )
    # ThreadDataLoader can be faster if no IO operations when caching all the data in memory
    val_loader = ThreadDataLoader(val_ds,
                                  num_workers=0,
                                  batch_size=args.batch_size,
                                  shuffle=False)

    # create network, loss function and optimizer
    if args.network == "SegResNet":
        model = SegResNet(
            blocks_down=[1, 2, 2, 4],
            blocks_up=[1, 1, 1],
            init_filters=16,
            in_channels=4,
            out_channels=3,
            dropout_prob=0.0,
        ).to(device)
    else:
        model = UNet(
            spatial_dims=3,
            in_channels=4,
            out_channels=3,
            channels=(16, 32, 64, 128, 256),
            strides=(2, 2, 2, 2),
            num_res_units=2,
        ).to(device)

    loss_function = DiceFocalLoss(
        smooth_nr=1e-5,
        smooth_dr=1e-5,
        squared_pred=True,
        to_onehot_y=False,
        sigmoid=True,
        batch=True,
    )
    optimizer = Novograd(model.parameters(), lr=args.lr)
    lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
        optimizer, T_max=args.epochs)
    # wrap the model with DistributedDataParallel module
    model = DistributedDataParallel(model, device_ids=[device])

    dice_metric = DiceMetric(include_background=True, reduction="mean")
    dice_metric_batch = DiceMetric(include_background=True,
                                   reduction="mean_batch")

    post_trans = Compose(
        [EnsureType(),
         Activations(sigmoid=True),
         AsDiscrete(threshold=0.5)])

    # start a typical PyTorch training
    best_metric = -1
    best_metric_epoch = -1
    print(f"time elapsed before training: {time.time() - total_start}")
    train_start = time.time()
    for epoch in range(args.epochs):
        epoch_start = time.time()
        print("-" * 10)
        print(f"epoch {epoch + 1}/{args.epochs}")
        epoch_loss = train(train_loader, model, loss_function, optimizer,
                           lr_scheduler, scaler)
        print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")

        if (epoch + 1) % args.val_interval == 0:
            metric, metric_tc, metric_wt, metric_et = evaluate(
                model, val_loader, dice_metric, dice_metric_batch, post_trans)

            if metric > best_metric:
                best_metric = metric
                best_metric_epoch = epoch + 1
                if dist.get_rank() == 0:
                    torch.save(model.state_dict(), "best_metric_model.pth")
            print(
                f"current epoch: {epoch + 1} current mean dice: {metric:.4f}"
                f" tc: {metric_tc:.4f} wt: {metric_wt:.4f} et: {metric_et:.4f}"
                f"\nbest mean dice: {best_metric:.4f} at epoch: {best_metric_epoch}"
            )

        print(
            f"time consuming of epoch {epoch + 1} is: {(time.time() - epoch_start):.4f}"
        )

    print(
        f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch},"
        f" total train time: {(time.time() - train_start):.4f}")
    dist.destroy_process_group()
コード例 #6
0
 def test_shape(self, input_param, input_shape, expected_shape):
     net = SegResNet(**input_param).to(device)
     with eval_mode(net):
         result = net(torch.randn(input_shape).to(device))
         self.assertEqual(result.shape, expected_shape)
コード例 #7
0
 def test_script(self):
     input_param, input_shape, expected_shape = TEST_CASE_SEGRESNET[0]
     net = SegResNet(**input_param)
     test_data = torch.randn(input_shape)
     test_script_save(net, test_data)