def test_warn_random_but_has_no_invertible(self): transforms = Compose( [AddChanneld("image"), RandFlipd("image", prob=1.0), RandScaleIntensityd("image", 0.1, prob=1.0)] ) with self.assertWarns(UserWarning): tta = TestTimeAugmentation(transforms, 5, 0, orig_key="image") tta(self.get_data(1, (20, 20), data_type=np.float32))
def test_single_transform(self): transforms = RandFlipd(["image", "label"]) tta = TestTimeAugmentation(transforms, batch_size=5, num_workers=0, inferrer_fn=lambda x: x) tta(self.get_data(1, (20, 20)))
def test_single_transform(self): for p in TEST_NDARRAYS: transforms = RandFlipd(["image", "label"], prob=1.0) tta = TestTimeAugmentation(transforms, batch_size=5, num_workers=0, inferrer_fn=lambda x: x) tta(self.get_data(1, (20, 20), data_type=p))
def test_image_no_label(self): transforms = RandFlipd(["image"], prob=1.0) tta = TestTimeAugmentation(transforms, batch_size=5, num_workers=0, inferrer_fn=lambda x: x, orig_key="image") tta(self.get_data(1, (20, 20), include_label=False))
def test_requires_meta_dict(self): transforms = Compose([RandFlipd("image"), Spacingd("image", (1, 1))]) tta = TestTimeAugmentation(transforms, batch_size=5, num_workers=0, inferrer_fn=lambda x: x, label_key="image") tta(self.get_data(1, (20, 20), include_label=False))