def test_value(self): key = "img" scaler = RandScaleIntensityd(keys=[key], factors=0.5, prob=1.0) scaler.set_random_state(seed=0) result = scaler({key: self.imt}) np.random.seed(0) expected = (self.imt * (1 + np.random.uniform(low=-0.5, high=0.5))).astype(np.float32) np.testing.assert_allclose(result[key], expected)
def test_value(self): key = "img" for p in TEST_NDARRAYS: scaler = RandScaleIntensityd(keys=[key], factors=0.5, prob=1.0) scaler.set_random_state(seed=0) result = scaler({key: p(self.imt)}) np.random.seed(0) # simulate the randomize function of transform np.random.random() expected = (self.imt * (1 + np.random.uniform(low=-0.5, high=0.5))).astype(np.float32) assert_allclose(result[key], p(expected), type_test="tensor")
def test_warn_random_but_has_no_invertible(self): transforms = Compose( [AddChanneld("image"), RandFlipd("image", prob=1.0), RandScaleIntensityd("image", 0.1, prob=1.0)] ) with self.assertWarns(UserWarning): tta = TestTimeAugmentation(transforms, 5, 0, orig_key="image") tta(self.get_data(1, (20, 20), data_type=np.float32))
def test_inverse_compose(self): transform = Compose( [ Resized(keys="img", spatial_size=[100, 100, 100]), OneOf( [ RandScaleIntensityd(keys="img", factors=0.5, prob=1.0), RandShiftIntensityd(keys="img", offsets=0.5, prob=1.0), ] ), ] ) transform.set_random_state(seed=0) result = transform({"img": np.ones((1, 101, 102, 103))}) result = transform.inverse(result) # invert to the original spatial shape self.assertTupleEqual(result["img"].shape, (1, 101, 102, 103))
def run_training(train_file_list, valid_file_list, config_info): """ Pipeline to train a dynUNet segmentation model in MONAI. It is composed of the following main blocks: * Data Preparation: Extract the filenames and prepare the training/validation processing transforms * Load Data: Load training and validation data to PyTorch DataLoader * Network Preparation: Define the network, loss function, optimiser and learning rate scheduler * MONAI Evaluator: Initialise the dynUNet evaluator, i.e. the class providing utilities to perform validation during training. Attach handlers to save the best model on the validation set. A 2D sliding window approach on the 3D volume is used at evaluation. The mean 3D Dice is used as validation metric. * MONAI Trainer: Initialise the dynUNet trainer, i.e. the class providing utilities to perform the training loop. * Run training: The MONAI trainer is run, performing training and validation during training. Args: train_file_list: .txt or .csv file (with no header) storing two-columns filenames for training: image filename in the first column and segmentation filename in the second column. The two columns should be separated by a comma. See monaifbs/config/mock_train_file_list_for_dynUnet_training.txt for an example of the expected format. valid_file_list: .txt or .csv file (with no header) storing two-columns filenames for validation: image filename in the first column and segmentation filename in the second column. The two columns should be separated by a comma. See monaifbs/config/mock_valid_file_list_for_dynUnet_training.txt for an example of the expected format. config_info: dict, contains configuration parameters for sampling, network and training. See monaifbs/config/monai_dynUnet_training_config.yml for an example of the expected fields. """ """ Read input and configuration parameters """ # print MONAI config information logging.basicConfig(stream=sys.stdout, level=logging.INFO) print_config() # print to log the parameter setups print(yaml.dump(config_info)) # extract network parameters, perform checks/set defaults if not present and print them to log if 'seg_labels' in config_info['training'].keys(): seg_labels = config_info['training']['seg_labels'] else: seg_labels = [1] nr_out_channels = len(seg_labels) print("Considering the following {} labels in the segmentation: {}".format(nr_out_channels, seg_labels)) patch_size = config_info["training"]["inplane_size"] + [1] print("Considering patch size = {}".format(patch_size)) spacing = config_info["training"]["spacing"] print("Bringing all images to spacing = {}".format(spacing)) if 'model_to_load' in config_info['training'].keys() and config_info['training']['model_to_load'] is not None: model_to_load = config_info['training']['model_to_load'] if not os.path.exists(model_to_load): raise FileNotFoundError("Cannot find model: {}".format(model_to_load)) else: print("Loading model from {}".format(model_to_load)) else: model_to_load = None # set up either GPU or CPU usage if torch.cuda.is_available(): print("\n#### GPU INFORMATION ###") print("Using device number: {}, name: {}\n".format(torch.cuda.current_device(), torch.cuda.get_device_name())) current_device = torch.device("cuda:0") else: current_device = torch.device("cpu") print("Using device: {}".format(current_device)) # set determinism if required if 'manual_seed' in config_info['training'].keys() and config_info['training']['manual_seed'] is not None: seed = config_info['training']['manual_seed'] else: seed = None if seed is not None: print("Using determinism with seed = {}\n".format(seed)) set_determinism(seed=seed) """ Setup data output directory """ out_model_dir = os.path.join(config_info['output']['out_dir'], datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + '_' + config_info['output']['out_postfix']) print("Saving to directory {}\n".format(out_model_dir)) # create cache directory to store results for Persistent Dataset if 'cache_dir' in config_info['output'].keys(): out_cache_dir = config_info['output']['cache_dir'] else: out_cache_dir = os.path.join(out_model_dir, 'persistent_cache') persistent_cache: Path = Path(out_cache_dir) persistent_cache.mkdir(parents=True, exist_ok=True) """ Data preparation """ # Read the input files for training and validation print("*** Loading input data for training...") train_files = create_data_list_of_dictionaries(train_file_list) print("Number of inputs for training = {}".format(len(train_files))) val_files = create_data_list_of_dictionaries(valid_file_list) print("Number of inputs for validation = {}".format(len(val_files))) # Define MONAI processing transforms for the training data. This includes: # - Load Nifti files and convert to format Batch x Channel x Dim1 x Dim2 x Dim3 # - CropForegroundd: Reduce the background from the MR image # - InPlaneSpacingd: Perform in-plane resampling to the desired spacing, but preserve the resolution along the # last direction (lowest resolution) to avoid introducing motion artefact resampling errors # - SpatialPadd: Pad the in-plane size to the defined network input patch size [N, M] if needed # - NormalizeIntensityd: Apply whitening # - RandSpatialCropd: Crop a random patch from the input with size [B, C, N, M, 1] # - SqueezeDimd: Convert the 3D patch to a 2D one as input to the network (i.e. bring it to size [B, C, N, M]) # - Apply data augmentation (RandZoomd, RandRotated, RandGaussianNoised, RandGaussianSmoothd, RandScaleIntensityd, # RandFlipd) # - ToTensor: convert to pytorch tensor train_transforms = Compose( [ LoadNiftid(keys=["image", "label"]), AddChanneld(keys=["image", "label"]), CropForegroundd(keys=["image", "label"], source_key="image"), InPlaneSpacingd( keys=["image", "label"], pixdim=spacing, mode=("bilinear", "nearest"), ), SpatialPadd(keys=["image", "label"], spatial_size=patch_size, mode=["constant", "edge"]), NormalizeIntensityd(keys=["image"], nonzero=False, channel_wise=True), RandSpatialCropd(keys=["image", "label"], roi_size=patch_size, random_size=False), SqueezeDimd(keys=["image", "label"], dim=-1), RandZoomd( keys=["image", "label"], min_zoom=0.9, max_zoom=1.2, mode=("bilinear", "nearest"), align_corners=(True, None), prob=0.16, ), RandRotated(keys=["image", "label"], range_x=90, range_y=90, prob=0.2, keep_size=True, mode=["bilinear", "nearest"], padding_mode=["zeros", "border"]), RandGaussianNoised(keys=["image"], std=0.01, prob=0.15), RandGaussianSmoothd( keys=["image"], sigma_x=(0.5, 1.15), sigma_y=(0.5, 1.15), sigma_z=(0.5, 1.15), prob=0.15, ), RandScaleIntensityd(keys=["image"], factors=0.3, prob=0.15), RandFlipd(["image", "label"], spatial_axis=[0, 1], prob=0.5), ToTensord(keys=["image", "label"]), ] ) # Define MONAI processing transforms for the validation data # - Load Nifti files and convert to format Batch x Channel x Dim1 x Dim2 x Dim3 # - CropForegroundd: Reduce the background from the MR image # - InPlaneSpacingd: Perform in-plane resampling to the desired spacing, but preserve the resolution along the # last direction (lowest resolution) to avoid introducing motion artefact resampling errors # - SpatialPadd: Pad the in-plane size to the defined network input patch size [N, M] if needed # - NormalizeIntensityd: Apply whitening # - ToTensor: convert to pytorch tensor # NOTE: The validation data is kept 3D as a 2D sliding window approach is used throughout the volume at inference val_transforms = Compose( [ LoadNiftid(keys=["image", "label"]), AddChanneld(keys=["image", "label"]), CropForegroundd(keys=["image", "label"], source_key="image"), InPlaneSpacingd( keys=["image", "label"], pixdim=spacing, mode=("bilinear", "nearest"), ), SpatialPadd(keys=["image", "label"], spatial_size=patch_size, mode=["constant", "edge"]), NormalizeIntensityd(keys=["image"], nonzero=False, channel_wise=True), ToTensord(keys=["image", "label"]), ] ) """ Load data """ # create training data loader train_ds = PersistentDataset(data=train_files, transform=train_transforms, cache_dir=persistent_cache) train_loader = DataLoader(train_ds, batch_size=config_info['training']['batch_size_train'], shuffle=True, num_workers=config_info['device']['num_workers']) check_train_data = misc.first(train_loader) print("Training data tensor shapes:") print("Image = {}; Label = {}".format(check_train_data["image"].shape, check_train_data["label"].shape)) # create validation data loader if config_info['training']['batch_size_valid'] != 1: raise Exception("Batch size different from 1 at validation ar currently not supported") val_ds = PersistentDataset(data=val_files, transform=val_transforms, cache_dir=persistent_cache) val_loader = DataLoader(val_ds, batch_size=1, shuffle=False, num_workers=config_info['device']['num_workers']) check_valid_data = misc.first(val_loader) print("Validation data tensor shapes (Example):") print("Image = {}; Label = {}\n".format(check_valid_data["image"].shape, check_valid_data["label"].shape)) """ Network preparation """ print("*** Preparing the network ...") # automatically extracts the strides and kernels based on nnU-Net empirical rules spacings = spacing[:2] sizes = patch_size[:2] strides, kernels = [], [] while True: spacing_ratio = [sp / min(spacings) for sp in spacings] stride = [2 if ratio <= 2 and size >= 8 else 1 for (ratio, size) in zip(spacing_ratio, sizes)] kernel = [3 if ratio <= 2 else 1 for ratio in spacing_ratio] if all(s == 1 for s in stride): break sizes = [i / j for i, j in zip(sizes, stride)] spacings = [i * j for i, j in zip(spacings, stride)] kernels.append(kernel) strides.append(stride) strides.insert(0, len(spacings) * [1]) kernels.append(len(spacings) * [3]) # initialise the network net = DynUNet( spatial_dims=2, in_channels=1, out_channels=nr_out_channels, kernel_size=kernels, strides=strides, upsample_kernel_size=strides[1:], norm_name="instance", deep_supervision=True, deep_supr_num=2, res_block=False, ).to(current_device) print(net) # define the loss function loss_function = choose_loss_function(nr_out_channels, config_info) # define the optimiser and the learning rate scheduler opt = torch.optim.SGD(net.parameters(), lr=float(config_info['training']['lr']), momentum=0.95) scheduler = torch.optim.lr_scheduler.LambdaLR( opt, lr_lambda=lambda epoch: (1 - epoch / config_info['training']['nr_train_epochs']) ** 0.9 ) """ MONAI evaluator """ print("*** Preparing the dynUNet evaluator engine...\n") # val_post_transforms = Compose( # [ # Activationsd(keys="pred", sigmoid=True), # ] # ) val_handlers = [ StatsHandler(output_transform=lambda x: None), TensorBoardStatsHandler(log_dir=os.path.join(out_model_dir, "valid"), output_transform=lambda x: None, global_epoch_transform=lambda x: trainer.state.iteration), CheckpointSaver(save_dir=out_model_dir, save_dict={"net": net, "opt": opt}, save_key_metric=True, file_prefix='best_valid'), ] if config_info['output']['val_image_to_tensorboad']: val_handlers.append(TensorBoardImageHandler(log_dir=os.path.join(out_model_dir, "valid"), batch_transform=lambda x: (x["image"], x["label"]), output_transform=lambda x: x["pred"], interval=2)) # Define customized evaluator class DynUNetEvaluator(SupervisedEvaluator): def _iteration(self, engine, batchdata): inputs, targets = self.prepare_batch(batchdata) inputs, targets = inputs.to(engine.state.device), targets.to(engine.state.device) flip_inputs_1 = torch.flip(inputs, dims=(2,)) flip_inputs_2 = torch.flip(inputs, dims=(3,)) flip_inputs_3 = torch.flip(inputs, dims=(2, 3)) def _compute_pred(): pred = self.inferer(inputs, self.network) # use random flipping as data augmentation at inference flip_pred_1 = torch.flip(self.inferer(flip_inputs_1, self.network), dims=(2,)) flip_pred_2 = torch.flip(self.inferer(flip_inputs_2, self.network), dims=(3,)) flip_pred_3 = torch.flip(self.inferer(flip_inputs_3, self.network), dims=(2, 3)) return (pred + flip_pred_1 + flip_pred_2 + flip_pred_3) / 4 # execute forward computation self.network.eval() with torch.no_grad(): if self.amp: with torch.cuda.amp.autocast(): predictions = _compute_pred() else: predictions = _compute_pred() return {"image": inputs, "label": targets, "pred": predictions} evaluator = DynUNetEvaluator( device=current_device, val_data_loader=val_loader, network=net, inferer=SlidingWindowInferer2D(roi_size=patch_size, sw_batch_size=4, overlap=0.0), post_transform=None, key_val_metric={ "Mean_dice": MeanDice( include_background=False, to_onehot_y=True, mutually_exclusive=True, output_transform=lambda x: (x["pred"], x["label"]), ) }, val_handlers=val_handlers, amp=False, ) """ MONAI trainer """ print("*** Preparing the dynUNet trainer engine...\n") # train_post_transforms = Compose( # [ # Activationsd(keys="pred", sigmoid=True), # ] # ) validation_every_n_epochs = config_info['training']['validation_every_n_epochs'] epoch_len = len(train_ds) // train_loader.batch_size validation_every_n_iters = validation_every_n_epochs * epoch_len # define event handlers for the trainer writer_train = SummaryWriter(log_dir=os.path.join(out_model_dir, "train")) train_handlers = [ LrScheduleHandler(lr_scheduler=scheduler, print_lr=True), ValidationHandler(validator=evaluator, interval=validation_every_n_iters, epoch_level=False), StatsHandler(tag_name="train_loss", output_transform=lambda x: x["loss"]), TensorBoardStatsHandler(summary_writer=writer_train, log_dir=os.path.join(out_model_dir, "train"), tag_name="Loss", output_transform=lambda x: x["loss"], global_epoch_transform=lambda x: trainer.state.iteration), CheckpointSaver(save_dir=out_model_dir, save_dict={"net": net, "opt": opt}, save_final=True, save_interval=2, epoch_level=True, n_saved=config_info['output']['max_nr_models_saved']), ] if model_to_load is not None: train_handlers.append(CheckpointLoader(load_path=model_to_load, load_dict={"net": net, "opt": opt})) # define customized trainer class DynUNetTrainer(SupervisedTrainer): def _iteration(self, engine, batchdata): inputs, targets = self.prepare_batch(batchdata) inputs, targets = inputs.to(engine.state.device), targets.to(engine.state.device) def _compute_loss(preds, label): labels = [label] + [interpolate(label, pred.shape[2:]) for pred in preds[1:]] return sum([0.5 ** i * self.loss_function(p, l) for i, (p, l) in enumerate(zip(preds, labels))]) self.network.train() self.optimizer.zero_grad() if self.amp and self.scaler is not None: with torch.cuda.amp.autocast(): predictions = self.inferer(inputs, self.network) loss = _compute_loss(predictions, targets) self.scaler.scale(loss).backward() self.scaler.step(self.optimizer) self.scaler.update() else: predictions = self.inferer(inputs, self.network) loss = _compute_loss(predictions, targets).mean() loss.backward() self.optimizer.step() return {"image": inputs, "label": targets, "pred": predictions, "loss": loss.item()} trainer = DynUNetTrainer( device=current_device, max_epochs=config_info['training']['nr_train_epochs'], train_data_loader=train_loader, network=net, optimizer=opt, loss_function=loss_function, inferer=SimpleInferer(), post_transform=None, key_train_metric=None, train_handlers=train_handlers, amp=False, ) """ Run training """ print("*** Run training...") trainer.run() print("Done!")
def main_worker(args): # disable logging for processes except 0 on every node if args.local_rank != 0: f = open(os.devnull, "w") sys.stdout = sys.stderr = f if not os.path.exists(args.dir): raise FileNotFoundError(f"Missing directory {args.dir}") # initialize the distributed training process, every GPU runs in a process dist.init_process_group(backend="nccl", init_method="env://") total_start = time.time() train_transforms = Compose([ # load 4 Nifti images and stack them together LoadNiftid(keys=["image", "label"]), AsChannelFirstd(keys="image"), ConvertToMultiChannelBasedOnBratsClassesd(keys="label"), Spacingd(keys=["image", "label"], pixdim=(1.5, 1.5, 2.0), mode=("bilinear", "nearest")), Orientationd(keys=["image", "label"], axcodes="RAS"), RandSpatialCropd(keys=["image", "label"], roi_size=[128, 128, 64], random_size=False), NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True), RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=0), RandScaleIntensityd(keys="image", factors=0.1, prob=0.5), RandShiftIntensityd(keys="image", offsets=0.1, prob=0.5), ToTensord(keys=["image", "label"]), ]) # create a training data loader train_ds = BratsCacheDataset( root_dir=args.dir, transform=train_transforms, section="training", num_workers=4, cache_rate=args.cache_rate, shuffle=True, ) train_loader = DataLoader(train_ds, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) # validation transforms and dataset val_transforms = Compose([ LoadNiftid(keys=["image", "label"]), AsChannelFirstd(keys="image"), ConvertToMultiChannelBasedOnBratsClassesd(keys="label"), Spacingd(keys=["image", "label"], pixdim=(1.5, 1.5, 2.0), mode=("bilinear", "nearest")), Orientationd(keys=["image", "label"], axcodes="RAS"), CenterSpatialCropd(keys=["image", "label"], roi_size=[128, 128, 64]), NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True), ToTensord(keys=["image", "label"]), ]) val_ds = BratsCacheDataset( root_dir=args.dir, transform=val_transforms, section="validation", num_workers=4, cache_rate=args.cache_rate, shuffle=False, ) val_loader = DataLoader(val_ds, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) if dist.get_rank() == 0: # Logging for TensorBoard writer = SummaryWriter(log_dir=args.log_dir) # create UNet, DiceLoss and Adam optimizer device = torch.device(f"cuda:{args.local_rank}") if args.network == "UNet": model = UNet( dimensions=3, in_channels=4, out_channels=3, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(device) else: model = SegResNet(in_channels=4, out_channels=3, init_filters=16, dropout_prob=0.2).to(device) loss_function = DiceLoss(to_onehot_y=False, sigmoid=True, squared_pred=True) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-5, amsgrad=True) # wrap the model with DistributedDataParallel module model = DistributedDataParallel(model, device_ids=[args.local_rank]) # start a typical PyTorch training total_epoch = args.epochs best_metric = -1000000 best_metric_epoch = -1 epoch_time = AverageMeter("Time", ":6.3f") progress = ProgressMeter(total_epoch, [epoch_time], prefix="Epoch: ") end = time.time() print(f"Time elapsed before training: {end-total_start}") for epoch in range(total_epoch): train_loss = train(train_loader, model, loss_function, optimizer, epoch, args, device) epoch_time.update(time.time() - end) if epoch % args.print_freq == 0: progress.display(epoch) if dist.get_rank() == 0: writer.add_scalar("Loss/train", train_loss, epoch) if (epoch + 1) % args.val_interval == 0: metric, metric_tc, metric_wt, metric_et = evaluate( model, val_loader, device) if dist.get_rank() == 0: writer.add_scalar("Mean Dice/val", metric, epoch) writer.add_scalar("Mean Dice TC/val", metric_tc, epoch) writer.add_scalar("Mean Dice WT/val", metric_wt, epoch) writer.add_scalar("Mean Dice ET/val", metric_et, epoch) if metric > best_metric: best_metric = metric best_metric_epoch = epoch + 1 print( f"current epoch: {epoch + 1} current mean dice: {metric:.4f}" f" tc: {metric_tc:.4f} wt: {metric_wt:.4f} et: {metric_et:.4f}" f"\nbest mean dice: {best_metric:.4f} at epoch: {best_metric_epoch}" ) end = time.time() print(f"Time elapsed after epoch {epoch + 1} is {end - total_start}") if dist.get_rank() == 0: print( f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}" ) # all processes should see same parameters as they all start from same # random parameters and gradients are synchronized in backward passes, # therefore, saving it in one process is sufficient torch.save(model.state_dict(), "final_model.pth") writer.flush() dist.destroy_process_group()
def get_task_transforms(mode, task_id, pos_sample_num, neg_sample_num, num_samples): if mode != "test": keys = ["image", "label"] else: keys = ["image"] load_transforms = [ LoadImaged(keys=keys), EnsureChannelFirstd(keys=keys), ] # 2. sampling sample_transforms = [ PreprocessAnisotropic( keys=keys, clip_values=clip_values[task_id], pixdim=spacing[task_id], normalize_values=normalize_values[task_id], model_mode=mode, ), ] # 3. spatial transforms if mode == "train": other_transforms = [ SpatialPadd(keys=["image", "label"], spatial_size=patch_size[task_id]), RandCropByPosNegLabeld( keys=["image", "label"], label_key="label", spatial_size=patch_size[task_id], pos=pos_sample_num, neg=neg_sample_num, num_samples=num_samples, image_key="image", image_threshold=0, ), RandZoomd( keys=["image", "label"], min_zoom=0.9, max_zoom=1.2, mode=("trilinear", "nearest"), align_corners=(True, None), prob=0.15, ), RandGaussianNoised(keys=["image"], std=0.01, prob=0.15), RandGaussianSmoothd( keys=["image"], sigma_x=(0.5, 1.15), sigma_y=(0.5, 1.15), sigma_z=(0.5, 1.15), prob=0.15, ), RandScaleIntensityd(keys=["image"], factors=0.3, prob=0.15), RandFlipd(["image", "label"], spatial_axis=[0], prob=0.5), RandFlipd(["image", "label"], spatial_axis=[1], prob=0.5), RandFlipd(["image", "label"], spatial_axis=[2], prob=0.5), CastToTyped(keys=["image", "label"], dtype=(np.float32, np.uint8)), EnsureTyped(keys=["image", "label"]), ] elif mode == "validation": other_transforms = [ CastToTyped(keys=["image", "label"], dtype=(np.float32, np.uint8)), EnsureTyped(keys=["image", "label"]), ] else: other_transforms = [ CastToTyped(keys=["image"], dtype=(np.float32)), EnsureTyped(keys=["image"]), ] all_transforms = load_transforms + sample_transforms + other_transforms return Compose(all_transforms)
def main_worker(args): # disable logging for processes except 0 on every node if args.local_rank != 0: f = open(os.devnull, "w") sys.stdout = sys.stderr = f if not os.path.exists(args.dir): raise FileNotFoundError(f"missing directory {args.dir}") # initialize the distributed training process, every GPU runs in a process dist.init_process_group(backend="nccl", init_method="env://") device = torch.device(f"cuda:{args.local_rank}") torch.cuda.set_device(device) # use amp to accelerate training scaler = torch.cuda.amp.GradScaler() torch.backends.cudnn.benchmark = True total_start = time.time() train_transforms = Compose([ # load 4 Nifti images and stack them together LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys="image"), ConvertToMultiChannelBasedOnBratsClassesd(keys="label"), Orientationd(keys=["image", "label"], axcodes="RAS"), Spacingd( keys=["image", "label"], pixdim=(1.0, 1.0, 1.0), mode=("bilinear", "nearest"), ), EnsureTyped(keys=["image", "label"]), ToDeviced(keys=["image", "label"], device=device), RandSpatialCropd(keys=["image", "label"], roi_size=[224, 224, 144], random_size=False), RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=0), RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=1), RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=2), NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True), RandScaleIntensityd(keys="image", factors=0.1, prob=0.5), RandShiftIntensityd(keys="image", offsets=0.1, prob=0.5), ]) # create a training data loader train_ds = BratsCacheDataset( root_dir=args.dir, transform=train_transforms, section="training", num_workers=4, cache_rate=args.cache_rate, shuffle=True, ) # ThreadDataLoader can be faster if no IO operations when caching all the data in memory train_loader = ThreadDataLoader(train_ds, num_workers=0, batch_size=args.batch_size, shuffle=True) # validation transforms and dataset val_transforms = Compose([ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys="image"), ConvertToMultiChannelBasedOnBratsClassesd(keys="label"), Orientationd(keys=["image", "label"], axcodes="RAS"), Spacingd( keys=["image", "label"], pixdim=(1.0, 1.0, 1.0), mode=("bilinear", "nearest"), ), NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True), EnsureTyped(keys=["image", "label"]), ToDeviced(keys=["image", "label"], device=device), ]) val_ds = BratsCacheDataset( root_dir=args.dir, transform=val_transforms, section="validation", num_workers=4, cache_rate=args.cache_rate, shuffle=False, ) # ThreadDataLoader can be faster if no IO operations when caching all the data in memory val_loader = ThreadDataLoader(val_ds, num_workers=0, batch_size=args.batch_size, shuffle=False) # create network, loss function and optimizer if args.network == "SegResNet": model = SegResNet( blocks_down=[1, 2, 2, 4], blocks_up=[1, 1, 1], init_filters=16, in_channels=4, out_channels=3, dropout_prob=0.0, ).to(device) else: model = UNet( spatial_dims=3, in_channels=4, out_channels=3, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(device) loss_function = DiceFocalLoss( smooth_nr=1e-5, smooth_dr=1e-5, squared_pred=True, to_onehot_y=False, sigmoid=True, batch=True, ) optimizer = Novograd(model.parameters(), lr=args.lr) lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( optimizer, T_max=args.epochs) # wrap the model with DistributedDataParallel module model = DistributedDataParallel(model, device_ids=[device]) dice_metric = DiceMetric(include_background=True, reduction="mean") dice_metric_batch = DiceMetric(include_background=True, reduction="mean_batch") post_trans = Compose( [EnsureType(), Activations(sigmoid=True), AsDiscrete(threshold=0.5)]) # start a typical PyTorch training best_metric = -1 best_metric_epoch = -1 print(f"time elapsed before training: {time.time() - total_start}") train_start = time.time() for epoch in range(args.epochs): epoch_start = time.time() print("-" * 10) print(f"epoch {epoch + 1}/{args.epochs}") epoch_loss = train(train_loader, model, loss_function, optimizer, lr_scheduler, scaler) print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}") if (epoch + 1) % args.val_interval == 0: metric, metric_tc, metric_wt, metric_et = evaluate( model, val_loader, dice_metric, dice_metric_batch, post_trans) if metric > best_metric: best_metric = metric best_metric_epoch = epoch + 1 if dist.get_rank() == 0: torch.save(model.state_dict(), "best_metric_model.pth") print( f"current epoch: {epoch + 1} current mean dice: {metric:.4f}" f" tc: {metric_tc:.4f} wt: {metric_wt:.4f} et: {metric_et:.4f}" f"\nbest mean dice: {best_metric:.4f} at epoch: {best_metric_epoch}" ) print( f"time consuming of epoch {epoch + 1} is: {(time.time() - epoch_start):.4f}" ) print( f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}," f" total train time: {(time.time() - train_start):.4f}") dist.destroy_process_group()
def main(): parser = argparse.ArgumentParser(description="training") parser.add_argument( "--checkpoint", type=str, default=None, help="checkpoint full path", ) parser.add_argument( "--factor_ram_cost", default=0.0, type=float, help="factor to determine RAM cost in the searched architecture", ) parser.add_argument( "--fold", action="store", required=True, help="fold index in N-fold cross-validation", ) parser.add_argument( "--json", action="store", required=True, help="full path of .json file", ) parser.add_argument( "--json_key", action="store", required=True, help="selected key in .json data list", ) parser.add_argument( "--local_rank", required=int, help="local process rank", ) parser.add_argument( "--num_folds", action="store", required=True, help="number of folds in cross-validation", ) parser.add_argument( "--output_root", action="store", required=True, help="output root", ) parser.add_argument( "--root", action="store", required=True, help="data root", ) args = parser.parse_args() logging.basicConfig(stream=sys.stdout, level=logging.INFO) if not os.path.exists(args.output_root): os.makedirs(args.output_root, exist_ok=True) amp = True determ = True factor_ram_cost = args.factor_ram_cost fold = int(args.fold) input_channels = 1 learning_rate = 0.025 learning_rate_arch = 0.001 learning_rate_milestones = np.array([0.4, 0.8]) num_images_per_batch = 1 num_epochs = 1430 # around 20k iteration num_epochs_per_validation = 100 num_epochs_warmup = 715 num_folds = int(args.num_folds) num_patches_per_image = 1 num_sw_batch_size = 6 output_classes = 3 overlap_ratio = 0.625 patch_size = (96, 96, 96) patch_size_valid = (96, 96, 96) spacing = [1.0, 1.0, 1.0] print("factor_ram_cost", factor_ram_cost) # deterministic training if determ: set_determinism(seed=0) # initialize the distributed training process, every GPU runs in a process dist.init_process_group(backend="nccl", init_method="env://") # dist.barrier() world_size = dist.get_world_size() with open(args.json, "r") as f: json_data = json.load(f) split = len(json_data[args.json_key]) // num_folds list_train = json_data[args.json_key][:( split * fold)] + json_data[args.json_key][(split * (fold + 1)):] list_valid = json_data[args.json_key][(split * fold):(split * (fold + 1))] # training data files = [] for _i in range(len(list_train)): str_img = os.path.join(args.root, list_train[_i]["image"]) str_seg = os.path.join(args.root, list_train[_i]["label"]) if (not os.path.exists(str_img)) or (not os.path.exists(str_seg)): continue files.append({"image": str_img, "label": str_seg}) train_files = files random.shuffle(train_files) train_files_w = train_files[:len(train_files) // 2] train_files_w = partition_dataset(data=train_files_w, shuffle=True, num_partitions=world_size, even_divisible=True)[dist.get_rank()] print("train_files_w:", len(train_files_w)) train_files_a = train_files[len(train_files) // 2:] train_files_a = partition_dataset(data=train_files_a, shuffle=True, num_partitions=world_size, even_divisible=True)[dist.get_rank()] print("train_files_a:", len(train_files_a)) # validation data files = [] for _i in range(len(list_valid)): str_img = os.path.join(args.root, list_valid[_i]["image"]) str_seg = os.path.join(args.root, list_valid[_i]["label"]) if (not os.path.exists(str_img)) or (not os.path.exists(str_seg)): continue files.append({"image": str_img, "label": str_seg}) val_files = files val_files = partition_dataset(data=val_files, shuffle=False, num_partitions=world_size, even_divisible=False)[dist.get_rank()] print("val_files:", len(val_files)) # network architecture device = torch.device(f"cuda:{args.local_rank}") torch.cuda.set_device(device) train_transforms = Compose([ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), Orientationd(keys=["image", "label"], axcodes="RAS"), Spacingd(keys=["image", "label"], pixdim=spacing, mode=("bilinear", "nearest"), align_corners=(True, True)), CastToTyped(keys=["image"], dtype=(torch.float32)), ScaleIntensityRanged(keys=["image"], a_min=-87.0, a_max=199.0, b_min=0.0, b_max=1.0, clip=True), CastToTyped(keys=["image", "label"], dtype=(np.float16, np.uint8)), CopyItemsd(keys=["label"], times=1, names=["label4crop"]), Lambdad( keys=["label4crop"], func=lambda x: np.concatenate(tuple([ ndimage.binary_dilation( (x == _k).astype(x.dtype), iterations=48).astype(x.dtype) for _k in range(output_classes) ]), axis=0), overwrite=True, ), EnsureTyped(keys=["image", "label"]), CastToTyped(keys=["image"], dtype=(torch.float32)), SpatialPadd(keys=["image", "label", "label4crop"], spatial_size=patch_size, mode=["reflect", "constant", "constant"]), RandCropByLabelClassesd(keys=["image", "label"], label_key="label4crop", num_classes=output_classes, ratios=[ 1, ] * output_classes, spatial_size=patch_size, num_samples=num_patches_per_image), Lambdad(keys=["label4crop"], func=lambda x: 0), RandRotated(keys=["image", "label"], range_x=0.3, range_y=0.3, range_z=0.3, mode=["bilinear", "nearest"], prob=0.2), RandZoomd(keys=["image", "label"], min_zoom=0.8, max_zoom=1.2, mode=["trilinear", "nearest"], align_corners=[True, None], prob=0.16), RandGaussianSmoothd(keys=["image"], sigma_x=(0.5, 1.15), sigma_y=(0.5, 1.15), sigma_z=(0.5, 1.15), prob=0.15), RandScaleIntensityd(keys=["image"], factors=0.3, prob=0.5), RandShiftIntensityd(keys=["image"], offsets=0.1, prob=0.5), RandGaussianNoised(keys=["image"], std=0.01, prob=0.15), RandFlipd(keys=["image", "label"], spatial_axis=0, prob=0.5), RandFlipd(keys=["image", "label"], spatial_axis=1, prob=0.5), RandFlipd(keys=["image", "label"], spatial_axis=2, prob=0.5), CastToTyped(keys=["image", "label"], dtype=(torch.float32, torch.uint8)), ToTensord(keys=["image", "label"]), ]) val_transforms = Compose([ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), Orientationd(keys=["image", "label"], axcodes="RAS"), Spacingd(keys=["image", "label"], pixdim=spacing, mode=("bilinear", "nearest"), align_corners=(True, True)), CastToTyped(keys=["image"], dtype=(torch.float32)), ScaleIntensityRanged(keys=["image"], a_min=-87.0, a_max=199.0, b_min=0.0, b_max=1.0, clip=True), CastToTyped(keys=["image", "label"], dtype=(np.float32, np.uint8)), EnsureTyped(keys=["image", "label"]), ToTensord(keys=["image", "label"]) ]) train_ds_a = monai.data.CacheDataset(data=train_files_a, transform=train_transforms, cache_rate=1.0, num_workers=8) train_ds_w = monai.data.CacheDataset(data=train_files_w, transform=train_transforms, cache_rate=1.0, num_workers=8) val_ds = monai.data.CacheDataset(data=val_files, transform=val_transforms, cache_rate=1.0, num_workers=2) # monai.data.Dataset can be used as alternatives when debugging or RAM space is limited. # train_ds_a = monai.data.Dataset(data=train_files_a, transform=train_transforms) # train_ds_w = monai.data.Dataset(data=train_files_w, transform=train_transforms) # val_ds = monai.data.Dataset(data=val_files, transform=val_transforms) train_loader_a = ThreadDataLoader(train_ds_a, num_workers=0, batch_size=num_images_per_batch, shuffle=True) train_loader_w = ThreadDataLoader(train_ds_w, num_workers=0, batch_size=num_images_per_batch, shuffle=True) val_loader = ThreadDataLoader(val_ds, num_workers=0, batch_size=1, shuffle=False) # DataLoader can be used as alternatives when ThreadDataLoader is less efficient. # train_loader_a = DataLoader(train_ds_a, batch_size=num_images_per_batch, shuffle=True, num_workers=2, pin_memory=torch.cuda.is_available()) # train_loader_w = DataLoader(train_ds_w, batch_size=num_images_per_batch, shuffle=True, num_workers=2, pin_memory=torch.cuda.is_available()) # val_loader = DataLoader(val_ds, batch_size=1, shuffle=False, num_workers=2, pin_memory=torch.cuda.is_available()) dints_space = monai.networks.nets.TopologySearch( channel_mul=0.5, num_blocks=12, num_depths=4, use_downsample=True, device=device, ) model = monai.networks.nets.DiNTS( dints_space=dints_space, in_channels=input_channels, num_classes=output_classes, use_downsample=True, ) model = model.to(device) model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) post_pred = Compose( [EnsureType(), AsDiscrete(argmax=True, to_onehot=output_classes)]) post_label = Compose([EnsureType(), AsDiscrete(to_onehot=output_classes)]) # loss function loss_func = monai.losses.DiceCELoss( include_background=False, to_onehot_y=True, softmax=True, squared_pred=True, batch=True, smooth_nr=0.00001, smooth_dr=0.00001, ) # optimizer optimizer = torch.optim.SGD(model.weight_parameters(), lr=learning_rate * world_size, momentum=0.9, weight_decay=0.00004) arch_optimizer_a = torch.optim.Adam([dints_space.log_alpha_a], lr=learning_rate_arch * world_size, betas=(0.5, 0.999), weight_decay=0.0) arch_optimizer_c = torch.optim.Adam([dints_space.log_alpha_c], lr=learning_rate_arch * world_size, betas=(0.5, 0.999), weight_decay=0.0) print() if torch.cuda.device_count() > 1: if dist.get_rank() == 0: print("Let's use", torch.cuda.device_count(), "GPUs!") model = DistributedDataParallel(model, device_ids=[device], find_unused_parameters=True) if args.checkpoint != None and os.path.isfile(args.checkpoint): print("[info] fine-tuning pre-trained checkpoint {0:s}".format( args.checkpoint)) model.load_state_dict(torch.load(args.checkpoint, map_location=device)) torch.cuda.empty_cache() else: print("[info] training from scratch") # amp if amp: from torch.cuda.amp import autocast, GradScaler scaler = GradScaler() if dist.get_rank() == 0: print("[info] amp enabled") # start a typical PyTorch training val_interval = num_epochs_per_validation best_metric = -1 best_metric_epoch = -1 epoch_loss_values = list() idx_iter = 0 metric_values = list() if dist.get_rank() == 0: writer = SummaryWriter( log_dir=os.path.join(args.output_root, "Events")) with open(os.path.join(args.output_root, "accuracy_history.csv"), "a") as f: f.write("epoch\tmetric\tloss\tlr\ttime\titer\n") dataloader_a_iterator = iter(train_loader_a) start_time = time.time() for epoch in range(num_epochs): decay = 0.5**np.sum([ (epoch - num_epochs_warmup) / (num_epochs - num_epochs_warmup) > learning_rate_milestones ]) lr = learning_rate * decay for param_group in optimizer.param_groups: param_group["lr"] = lr if dist.get_rank() == 0: print("-" * 10) print(f"epoch {epoch + 1}/{num_epochs}") print("learning rate is set to {}".format(lr)) model.train() epoch_loss = 0 loss_torch = torch.zeros(2, dtype=torch.float, device=device) epoch_loss_arch = 0 loss_torch_arch = torch.zeros(2, dtype=torch.float, device=device) step = 0 for batch_data in train_loader_w: step += 1 inputs, labels = batch_data["image"].to( device), batch_data["label"].to(device) if world_size == 1: for _ in model.weight_parameters(): _.requires_grad = True else: for _ in model.module.weight_parameters(): _.requires_grad = True dints_space.log_alpha_a.requires_grad = False dints_space.log_alpha_c.requires_grad = False optimizer.zero_grad() if amp: with autocast(): outputs = model(inputs) if output_classes == 2: loss = loss_func(torch.flip(outputs, dims=[1]), 1 - labels) else: loss = loss_func(outputs, labels) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() else: outputs = model(inputs) if output_classes == 2: loss = loss_func(torch.flip(outputs, dims=[1]), 1 - labels) else: loss = loss_func(outputs, labels) loss.backward() optimizer.step() epoch_loss += loss.item() loss_torch[0] += loss.item() loss_torch[1] += 1.0 epoch_len = len(train_loader_w) idx_iter += 1 if dist.get_rank() == 0: print("[{0}] ".format(str(datetime.now())[:19]) + f"{step}/{epoch_len}, train_loss: {loss.item():.4f}") writer.add_scalar("train_loss", loss.item(), epoch_len * epoch + step) if epoch < num_epochs_warmup: continue try: sample_a = next(dataloader_a_iterator) except StopIteration: dataloader_a_iterator = iter(train_loader_a) sample_a = next(dataloader_a_iterator) inputs_search, labels_search = sample_a["image"].to( device), sample_a["label"].to(device) if world_size == 1: for _ in model.weight_parameters(): _.requires_grad = False else: for _ in model.module.weight_parameters(): _.requires_grad = False dints_space.log_alpha_a.requires_grad = True dints_space.log_alpha_c.requires_grad = True # linear increase topology and RAM loss entropy_alpha_c = torch.tensor(0.).to(device) entropy_alpha_a = torch.tensor(0.).to(device) ram_cost_full = torch.tensor(0.).to(device) ram_cost_usage = torch.tensor(0.).to(device) ram_cost_loss = torch.tensor(0.).to(device) topology_loss = torch.tensor(0.).to(device) probs_a, arch_code_prob_a = dints_space.get_prob_a(child=True) entropy_alpha_a = -((probs_a) * torch.log(probs_a + 1e-5)).mean() entropy_alpha_c = -(F.softmax(dints_space.log_alpha_c, dim=-1) * \ F.log_softmax(dints_space.log_alpha_c, dim=-1)).mean() topology_loss = dints_space.get_topology_entropy(probs_a) ram_cost_full = dints_space.get_ram_cost_usage(inputs.shape, full=True) ram_cost_usage = dints_space.get_ram_cost_usage(inputs.shape) ram_cost_loss = torch.abs(factor_ram_cost - ram_cost_usage / ram_cost_full) arch_optimizer_a.zero_grad() arch_optimizer_c.zero_grad() combination_weights = (epoch - num_epochs_warmup) / ( num_epochs - num_epochs_warmup) if amp: with autocast(): outputs_search = model(inputs_search) if output_classes == 2: loss = loss_func(torch.flip(outputs_search, dims=[1]), 1 - labels_search) else: loss = loss_func(outputs_search, labels_search) loss += combination_weights * ((entropy_alpha_a + entropy_alpha_c) + ram_cost_loss \ + 0.001 * topology_loss) scaler.scale(loss).backward() scaler.step(arch_optimizer_a) scaler.step(arch_optimizer_c) scaler.update() else: outputs_search = model(inputs_search) if output_classes == 2: loss = loss_func(torch.flip(outputs_search, dims=[1]), 1 - labels_search) else: loss = loss_func(outputs_search, labels_search) loss += 1.0 * (combination_weights * (entropy_alpha_a + entropy_alpha_c) + ram_cost_loss \ + 0.001 * topology_loss) loss.backward() arch_optimizer_a.step() arch_optimizer_c.step() epoch_loss_arch += loss.item() loss_torch_arch[0] += loss.item() loss_torch_arch[1] += 1.0 if dist.get_rank() == 0: print( "[{0}] ".format(str(datetime.now())[:19]) + f"{step}/{epoch_len}, train_loss_arch: {loss.item():.4f}") writer.add_scalar("train_loss_arch", loss.item(), epoch_len * epoch + step) # synchronizes all processes and reduce results dist.barrier() dist.all_reduce(loss_torch, op=torch.distributed.ReduceOp.SUM) loss_torch = loss_torch.tolist() loss_torch_arch = loss_torch_arch.tolist() if dist.get_rank() == 0: loss_torch_epoch = loss_torch[0] / loss_torch[1] print( f"epoch {epoch + 1} average loss: {loss_torch_epoch:.4f}, best mean dice: {best_metric:.4f} at epoch {best_metric_epoch}" ) if epoch >= num_epochs_warmup: loss_torch_arch_epoch = loss_torch_arch[0] / loss_torch_arch[1] print( f"epoch {epoch + 1} average arch loss: {loss_torch_arch_epoch:.4f}, best mean dice: {best_metric:.4f} at epoch {best_metric_epoch}" ) if (epoch + 1) % val_interval == 0: torch.cuda.empty_cache() model.eval() with torch.no_grad(): metric = torch.zeros((output_classes - 1) * 2, dtype=torch.float, device=device) metric_sum = 0.0 metric_count = 0 metric_mat = [] val_images = None val_labels = None val_outputs = None _index = 0 for val_data in val_loader: val_images = val_data["image"].to(device) val_labels = val_data["label"].to(device) roi_size = patch_size_valid sw_batch_size = num_sw_batch_size if amp: with torch.cuda.amp.autocast(): pred = sliding_window_inference( val_images, roi_size, sw_batch_size, lambda x: model(x), mode="gaussian", overlap=overlap_ratio, ) else: pred = sliding_window_inference( val_images, roi_size, sw_batch_size, lambda x: model(x), mode="gaussian", overlap=overlap_ratio, ) val_outputs = pred val_outputs = post_pred(val_outputs[0, ...]) val_outputs = val_outputs[None, ...] val_labels = post_label(val_labels[0, ...]) val_labels = val_labels[None, ...] value = compute_meandice(y_pred=val_outputs, y=val_labels, include_background=False) print(_index + 1, "/", len(val_loader), value) metric_count += len(value) metric_sum += value.sum().item() metric_vals = value.cpu().numpy() if len(metric_mat) == 0: metric_mat = metric_vals else: metric_mat = np.concatenate((metric_mat, metric_vals), axis=0) for _c in range(output_classes - 1): val0 = torch.nan_to_num(value[0, _c], nan=0.0) val1 = 1.0 - torch.isnan(value[0, 0]).float() metric[2 * _c] += val0 * val1 metric[2 * _c + 1] += val1 _index += 1 # synchronizes all processes and reduce results dist.barrier() dist.all_reduce(metric, op=torch.distributed.ReduceOp.SUM) metric = metric.tolist() if dist.get_rank() == 0: for _c in range(output_classes - 1): print( "evaluation metric - class {0:d}:".format(_c + 1), metric[2 * _c] / metric[2 * _c + 1]) avg_metric = 0 for _c in range(output_classes - 1): avg_metric += metric[2 * _c] / metric[2 * _c + 1] avg_metric = avg_metric / float(output_classes - 1) print("avg_metric", avg_metric) if avg_metric > best_metric: best_metric = avg_metric best_metric_epoch = epoch + 1 best_metric_iterations = idx_iter node_a_d, arch_code_a_d, arch_code_c_d, arch_code_a_max_d = dints_space.decode( ) torch.save( { "node_a": node_a_d, "arch_code_a": arch_code_a_d, "arch_code_a_max": arch_code_a_max_d, "arch_code_c": arch_code_c_d, "iter_num": idx_iter, "epochs": epoch + 1, "best_dsc": best_metric, "best_path": best_metric_iterations, }, os.path.join(args.output_root, "search_code_" + str(idx_iter) + ".pth"), ) print("saved new best metric model") dict_file = {} dict_file["best_avg_dice_score"] = float(best_metric) dict_file["best_avg_dice_score_epoch"] = int( best_metric_epoch) dict_file["best_avg_dice_score_iteration"] = int(idx_iter) with open(os.path.join(args.output_root, "progress.yaml"), "w") as out_file: documents = yaml.dump(dict_file, stream=out_file) print( "current epoch: {} current mean dice: {:.4f} best mean dice: {:.4f} at epoch {}" .format(epoch + 1, avg_metric, best_metric, best_metric_epoch)) current_time = time.time() elapsed_time = (current_time - start_time) / 60.0 with open( os.path.join(args.output_root, "accuracy_history.csv"), "a") as f: f.write( "{0:d}\t{1:.5f}\t{2:.5f}\t{3:.5f}\t{4:.1f}\t{5:d}\n" .format(epoch + 1, avg_metric, loss_torch_epoch, lr, elapsed_time, idx_iter)) dist.barrier() torch.cuda.empty_cache() print( f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}" ) if dist.get_rank() == 0: writer.close() dist.destroy_process_group() return
SpatialPadd(keys=("input", "mask"), spatial_size=(1120, 1120)), RandFlipd(keys=("input", "mask"), prob=0.5, spatial_axis=1), RandAffined( keys=("input", "mask"), prob=0.5, rotate_range=np.pi / 14.4, translate_range=(70, 70), scale_range=(0.1, 0.1), as_tensor_output=False, ), RandSpatialCropd( keys=("input", "mask"), roi_size=(cfg.img_size[0], cfg.img_size[1]), random_size=False, ), RandScaleIntensityd(keys="input", factors=(-0.2, 0.2), prob=0.5), RandShiftIntensityd(keys="input", offsets=(-51, 51), prob=0.5), RandLambdad(keys="input", func=lambda x: 255 - x, prob=0.5), RandCoarseDropoutd( keys=("input", "mask"), holes=8, spatial_size=(1, 1), max_spatial_size=(102, 102), prob=0.5, ), CastToTyped(keys="input", dtype=np.float32), NormalizeIntensityd(keys="input", nonzero=False), Lambdad(keys="input", func=lambda x: x.clip(-20, 20)), EnsureTyped(keys=("input", "mask")), ])
# load 4 Nifti images and stack them together LoadImaged(keys=["image", "label"]), AsChannelFirstd(keys="image"), ConvertToMultiChannelBasedOnBratsClassesd(keys="label"), Spacingd( keys=["image", "label"], pixdim=(1.5, 1.5, 2.0), mode=("bilinear", "nearest"), ), Orientationd(keys=["image", "label"], axcodes="RAS"), RandSpatialCropd(keys=["image", "label"], roi_size=[128, 128, 64], random_size=False), RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=0), NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True), RandScaleIntensityd(keys="image", factors=0.1, prob=0.5), RandShiftIntensityd(keys="image", offsets=0.1, prob=0.5), ToTensord(keys=["image", "label"]), ]) val_transform = Compose([ LoadImaged(keys=["image", "label"]), AsChannelFirstd(keys="image"), ConvertToMultiChannelBasedOnBratsClassesd(keys="label"), Spacingd( keys=["image", "label"], pixdim=(1.5, 1.5, 2.0), mode=("bilinear", "nearest"), ), Orientationd(keys=["image", "label"], axcodes="RAS"), CenterSpatialCropd(keys=["image", "label"], roi_size=[128, 128, 64]), NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True),