def test_turtle_load_user(self): turtleName = self.get_turtle() if not monkapi.has_turtle_in_store(turtleName, self.user): monkapi.follow_turtle(turtleName, self.user, self.leader) result = monkapi.load_turtle(turtleName, self.user) assert result != None # load can be repeated, overwrite the memory from database result = monkapi.load_turtle(turtleName, self.user) assert result != None
stemT.save() [ent.save() for ent in ents] likeTS = ms.yaml2json('turtle_scripts/turtle_like.yml') # print likeTS likeT = ms.create_turtle(likeTS) likeT.save() ent = ents[0] # print ents[0].generic() ent._setattr('likeTravel', 'Y') ms.crane.entityStore.save_one(ent) ms.add_data('likeTravel', 'monk', str(ents[0]._id)) print likeT.tigress.p print likeT.pandas[0].mantis.data likeT.tigress.defaulting=True likeT.save() likeT = ms.load_turtle('likeTravel','monk') likeT.train() for i in ents: ent = ms.load_entity(i._id) print likeT.pandas[0].predict(ent) print sign0(likeT.pandas[0].predict(ent)) # likeTS = ms.yaml2json('turtle_scripts/turtle_like.yml') # # print likeTS # likeT = ms.create_turtle(likeTS) # likeT.save() # ent = ents[0] # # print ents[0].generic() # ent._setattr('likeTravel', 'Y') # ms.crane.entityStore.save_all(ents)
def train(turtleName,creator='monk'): trainer = ms.load_turtle(turtleName,creator) trainer.train() return trainer