コード例 #1
0
ファイル: models.py プロジェクト: vuciv/moodzaic
 def predict(self):
     weightDict, biasDict = self.getWeightBiasDictionaries()
     model = MoodNeuralNetwork(weights=weightDict, biases=biasDict)
     input_data, mood_data = self.transformUserData(1)
     output = model.feedforward(input_data[0])
     mood = model.roundClass(output)
     return mood
コード例 #2
0
ファイル: tests.py プロジェクト: reyesj5/moodzaic
 def test_setEmotions(self):
     emotions = ['Love', 'Sad', 'Hesitant', 'Calm', 'Happy']
     model1 = MoodNeuralNetwork()
     emotions2 = model1.getEmotions()
     self.assertNotEqual(emotions, emotions2)
     self.assertTrue(model1.setEmotions(emotions))
     self.assertEqual(emotions, model1.getEmotions())
コード例 #3
0
ファイル: tests.py プロジェクト: reyesj5/moodzaic
 def test_setBias(self):
     biasDict = {}
     for i in range(21):
         biasDict['bias' + str(i)] = np.random.normal()
     model = MoodNeuralNetwork()
     self.assertNotEqual(biasDict, model.getBiases())
     self.assertTrue(model.setBias(biasDict))
     self.assertEqual(biasDict, model.getBiases())
コード例 #4
0
ファイル: tests.py プロジェクト: reyesj5/moodzaic
 def test_setWeights(self):
     weightDict = {}
     for i in range(208):
         weightDict['weight' + str(i)] = np.random.normal()
     model = MoodNeuralNetwork()
     self.assertNotEqual(weightDict, model.getWeights())
     self.assertTrue(model.setWeights(weightDict))
     self.assertEqual(weightDict, model.getWeights())
コード例 #5
0
ファイル: tests.py プロジェクト: reyesj5/moodzaic
 def setUp(self):
     model1 = MoodNeuralNetwork()
     weightDict, biasDict = {}, {}
     for i in range(208):
         weightDict['weight' + str(i)] = np.random.normal()
         if i < 21:
             biasDict['weight' + str(i)] = np.random.normal()
     model2 = MoodNeuralNetwork(weights=weightDict, biases=biasDict)
コード例 #6
0
ファイル: tests.py プロジェクト: reyesj5/moodzaic
 def test_loss(self):
     network = MoodNeuralNetwork()
     sample_data = np.array(list(range(100)))
     sample_real = [x + 0.1 for x in list(range(0,100))]
     sample_real = np.array(sample_real)
     self.assertEqual(0.009999999999999724, network.loss(sample_data, sample_real))
     sample_real = list(range(0,100))
     self.assertEqual(0, network.loss(sample_data, sample_real))
コード例 #7
0
ファイル: tests.py プロジェクト: reyesj5/moodzaic
 def test_getBiases(self):
     weightDict, biasDict = {}, {}
     for i in range(208):
         weightDict['weight' + str(i)] = np.random.normal()
         if i < 21:
             biasDict['bias' + str(i)] = np.random.normal()
     model = MoodNeuralNetwork(weights=weightDict, biases=biasDict)
     self.assertEqual(biasDict, model.getBiases())
     self.assertTrue(model.getBiases())
コード例 #8
0
ファイル: tests.py プロジェクト: reyesj5/moodzaic
 def test_deriv_activation(self):
     network = MoodNeuralNetwork()
     self.assertEqual(0, network.deriv_activation(1))
     self.assertEqual(0.25, network.deriv_activation(0.5))
     self.assertEqual(0.5, network.activation(0))
     self.assertEqual(-0.75, network.deriv_activation(-.5))
     self.assertEqual(0.16000000000000003, network.deriv_activation(0.2))
     self.assertEqual(-90, network.deriv_activation(10))
     self.assertEqual(-2024.75, network.deriv_activation(-44.5))
     self.assertEqual(0.09000000000000001, network.deriv_activation(0.1))
コード例 #9
0
ファイル: tests.py プロジェクト: reyesj5/moodzaic
 def test_activation(self):
     network = MoodNeuralNetwork()
     self.assertEqual(0.7310585786300049, network.activation(1))
     self.assertEqual(0.6224593312018546, network.activation(0.5))
     self.assertEqual(0.5, network.activation(0))
     self.assertEqual(0.3775406687981454, network.activation(-.5))
     self.assertEqual(0.549833997312478, network.activation(0.2))
     self.assertEqual(0.9999546021312976, network.activation(10))
     self.assertEqual(4.719495271526123e-20, network.activation(-44.5))
     self.assertEqual(0.52497918747894, network.activation(0.1))
コード例 #10
0
 def setWeightsBias(self, biases_list=False):
     if biases_list:
         if len(biases_list) != 21:
             return False
         self.bias_int_list = ",".join(str(x) for x in biases_list)
     else:
         model = MoodNeuralNetwork()
         biasDict = model.getBiases()
         biases = []
         for i in range(len(biasDict)):
             biases.append(biasDict["bias" + str(i)])
         self.setWeightsBias(biases)
     return True
コード例 #11
0
    def setWeightsWeights(self, weights_list=False):
        if weights_list:
            if len(weights_list) != 208:
                return False

            self.weights_int_list = ",".join(str(x) for x in weights_list)
        else:
            model = MoodNeuralNetwork()
            weightDict = model.getWeights()
            weights = []
            for i in range(len(weightDict)):
                weights.append(weightDict["weight" + str(i)])
            self.setWeightsWeights(weights)
        return True
コード例 #12
0
 def predict(self):
     weightDict, biasDict = self.getWeightBiasDictionaries()
     model = MoodNeuralNetwork(weights=weightDict, biases=biasDict)
     input_data, mood_data = self.transformUserData(1)
     try:
         output = model.feedforward(input_data[0])
     except:
         return -1, 0
     mood = model.roundClass(output)
     self.updateMoodPrediction(mood)
     profile = self.user.profile
     obs = Observation.objects.filter(
         user__user__username=profile.user.username)
     print("\n\n\n\n", obs, "\n\n\n\n")
     return mood, len(obs)
コード例 #13
0
ファイル: tests.py プロジェクト: reyesj5/moodzaic
 def test_train(self):
     weightDict, biasDict = {}, {}
     for i in range(208):
         weightDict['weight' + str(i)] = i
         if i < 21:
             biasDict['bias' + str(i)] = i
     network = MoodNeuralNetwork(weights=weightDict, biases=biasDict)
     sample_data = np.array([[2,1,4,5,6,2,6,7,3,6,6]])
     true = np.array([30])
     prediction = network.feedforward(sample_data[0])
     loss1 = network.loss(true, prediction)
     network.train(sample_data, true)
     prediction = network.feedforward(sample_data[0])
     loss2 = network.loss(true, network.roundClass(prediction))
     self.assertTrue(loss2 < loss1)
コード例 #14
0
ファイル: tests.py プロジェクト: reyesj5/moodzaic
 def test_roundClass(self):
     network = MoodNeuralNetwork()
     self.assertEqual(0, int(network.roundClass(0)))
     self.assertEqual(41, int(network.roundClass(0.999)))
     self.assertEqual(8, int(network.roundClass(0.2)))
     self.assertEqual(12, int(network.roundClass(0.3)))
     self.assertEqual(20, int(network.roundClass(0.5)))
     self.assertEqual(29, int(network.roundClass(0.7)))
コード例 #15
0
ファイル: tests.py プロジェクト: vuciv/moodzaic
 def test_feedforward(self):
     weightDict, biasDict = {}, {}
     for i in range(208):
         weightDict['weight' + str(i)] = i / 8
         if i < 21:
             biasDict['bias' + str(i)] = i / 8
     network = MoodNeuralNetwork(weights=weightDict, biases=biasDict)
     sample_data = [2, 1, 4, 5, 6, 2, 6, 7, 3, 6, 6]
     self.assertEqual(1, int(network.feedforward(sample_data)[0]))
     weightDict, biasDict = {}, {}
     for i in range(208):
         weightDict['weight' + str(i)] = i / 208
         if i < 21:
             biasDict['bias' + str(i)] = i / 208
     network = MoodNeuralNetwork(weights=weightDict, biases=biasDict)
     sample_data = list(range(11))
     self.assertEqual(0, int(network.feedforward(sample_data)[0]))
コード例 #16
0
ファイル: models.py プロジェクト: vuciv/moodzaic
    def retrain(self):
        weightDict, biasDict = self.getWeightBiasDictionaries()
        model = MoodNeuralNetwork(weights=weightDict, biases=biasDict)
        input_data, mood_data = self.transformUserData(7)
        model.train(input_data, mood_data)
        weightDict = model.getWeights()
        weights = []
        for i in range(len(weightDict)):
            weights.append(weightDict["weight" + str(i)])
        self.setWeightsWeights(weights)

        biasDict = model.getBiases()
        biases = []
        for i in range(len(biasDict)):
            biases.append(biasDict["bias" + str(i)])
        self.setWeightsBias(biases)

        return True
コード例 #17
0
import json

from mood_model.mood_neural_network import MoodNeuralNetwork

baseModel = MoodNeuralNetwork()
emotions = baseModel.getEmotions()
emotion_map = {}
for i in range(len(emotions)):
    emotion_map[emotions[i]] = i

with open('notifications.txt',
          'r') as file:  # Use file to refer to the file object
    data = file.read().splitlines()
print(data)
reminders = {}
curr = ""
for i in range(len(data)):
    if data[i] in emotion_map:
        reminders[data[i]] = []
        curr = data[i]
    else:
        reminders[curr].append(data[i])
print(reminders)
print(reminders['Sad'])
with open('notifications.json', 'w') as fp:
    json.dump(reminders, fp)
コード例 #18
0
ファイル: tests.py プロジェクト: reyesj5/moodzaic
 def test_normalize(self):
     network = MoodNeuralNetwork()
     data = np.array([list(range(11))])
     normalized = network.normalize(data)
     for j in range(len(data[0])):
         self.assertEqual(data[0][j], normalized[0][j])
コード例 #19
0
ファイル: tests.py プロジェクト: reyesj5/moodzaic
 def test_getEmotions(self):
     emotions = getEmotions()
     model1 = MoodNeuralNetwork()
     emotions2 = model1.getEmotions()
     self.assertEqual(emotions, emotions2)
     self.assertTrue(model1.getEmotions())
コード例 #20
0
ファイル: tests.py プロジェクト: reyesj5/moodzaic
    def test_feedforward(self):
        weightDict, biasDict = {}, {}
        for i in range(208):
            weightDict['weight' + str(i)] = i/8
            if i < 21:
                biasDict['bias' + str(i)] = i/8
        network = MoodNeuralNetwork(weights=weightDict, biases=biasDict)
        sample_data = [2,1,4,5,6,2,6,7,3,6,6]
        self.assertEqual(41, network.roundClass(network.feedforward(sample_data)))
        weightDict, biasDict = {}, {}
        for i in range(208):
            weightDict['weight' + str(i)] = i/208
            if i < 21:
                biasDict['bias' + str(i)] = i/208
        network = MoodNeuralNetwork(weights=weightDict, biases=biasDict)
        sample_data = list(range(11))
        self.assertEqual(39, network.roundClass(network.feedforward(sample_data)))

        network = MoodNeuralNetwork()
        sample_data = [4.51,0,0,0,0,0,0,0,-1,8,35]
        self.assertEqual(25, network.roundClass(network.feedforward(sample_data)))
        sample_data = [15,25,50,0,0,0,0,0,-1,-100,0]
        self.assertEqual(33, network.roundClass(network.feedforward(sample_data)))