コード例 #1
0
ファイル: predators_arena.py プロジェクト: nwatters01/moog_js
    def __init__(self, num_predators, step_scaling_factor,
                 threshold_trial_len):
        """Constructor.

        This class uses the meta-state to keep track of the number of steps
        before the agent is caught. See the game rules section near the bottom
        of this file for the counter incrementer.

        Args:
            step_scaling_factor: Float. Fractional decrease of predator mass
                after a trial longer than threshold_trial_len. Also used as
                fractional increase of predator mass after a trial shorter than
                threshold_trial_len. Should be small and positive.
            threshold_trial_len: Length of a trial above which the predator
                mass is decreased and below which the predator mass is
                increased.
        """
        self._mass = 1.
        self._step_scaling_factor = step_scaling_factor
        self._threshold_trial_len = threshold_trial_len

        # Agent
        agent_factors = distribs.Product(
            [
                distribs.Continuous('x', 0., 1.),
                distribs.Continuous('y', 0., 1.)
            ],
            shape='circle',
            scale=0.1,
            c0=0.33,
            c1=1.,
            c2=0.66,
        )
        self._agent_generator = sprite_generators.generate_sprites(
            agent_factors, num_sprites=1)

        # Predators
        predator_factors = distribs.Product(
            [
                distribs.Continuous('x', 0., 1.),
                distribs.Continuous('y', 0., 1.)
            ],
            shape='circle',
            scale=0.1,
            c0=0.,
            c1=1.,
            c2=0.8,
        )
        self._predator_generator = sprite_generators.generate_sprites(
            predator_factors, num_sprites=num_predators)

        # Walls
        self._walls = shapes.border_walls(visible_thickness=0.,
                                          c0=0.,
                                          c1=0.,
                                          c2=0.5)

        self._meta_state = None
コード例 #2
0
ファイル: falling_balls.py プロジェクト: nwatters01/moog_js
def get_config(_):
    """Get environment config"""

    ############################################################################
    # Sprite initialization
    ############################################################################

    # Ball generator
    ball_factors = distribs.Product(
        [
            distribs.Continuous('x', 0.25, 0.75),
            distribs.Continuous('y', 0.5, 0.9),
            distribs.Continuous('x_vel', -0.01, 0.01)
        ],
        scale=0.1,
        shape='circle',
        c0=0,
        c1=0,
        c2=255,
        mass=1.,
    )
    ball_generator = sprite_generators.generate_sprites(ball_factors,
                                                        num_sprites=4)

    # Walls
    bottom_wall = [[-1, 0.1], [2, 0.1], [2, -1], [-1, -1]]
    left_wall = [[0.05, -0.1], [0.05, 1.1], [-1, 1.1], [-1, -0.1]]
    right_wall = [[0.95, -0.1], [0.95, 1.1], [2, 1.1], [2, -0.1]]
    divider = [[0.45, -1], [0.45, 0.3], [0.55, 0.3], [0.55, -1]]
    walls = [
        sprite_lib.Sprite(shape=np.array(v), x=0, y=0, c0=128, c1=128, c2=128)
        for v in [bottom_wall, left_wall, right_wall, divider]
    ]

    def state_initializer():
        """Callable returning new state at each episode reset."""
        state = collections.OrderedDict([
            ('walls', walls),
            ('balls', ball_generator(disjoint=True)),
            ('agent', []),
        ])

        return state

    ############################################################################
    # Physics
    ############################################################################

    # Setting max_recursion_depth > 0 can increase stability
    # Setting update_angle_vel = False is recommended for stability
    collision = physics_lib.Collision(
        elasticity=0.6,
        symmetric=False,
        update_angle_vel=False,
        max_recursion_depth=2,
    )
    physics = physics_lib.Physics(
        (collision, 'balls', ['balls', 'walls']),
        (physics_lib.DownGravity(g=-0.001), 'balls'),
        updates_per_env_step=20,
    )

    ############################################################################
    # Task
    ############################################################################

    task = tasks.CompositeTask(timeout_steps=100)

    ############################################################################
    # Action space
    ############################################################################

    # Need an action space, so let it control an empty agent layer
    action_space = action_spaces.Grid(action_layers='agent')

    ############################################################################
    # Observer
    ############################################################################

    observer = observers.PILRenderer(image_size=(64, 64), anti_aliasing=1)

    ############################################################################
    # Final config
    ############################################################################

    config = {
        'state_initializer': state_initializer,
        'physics': physics,
        'task': task,
        'action_space': action_space,
        'observers': {
            'image': observer
        },
        'game_rules': (),
    }
    return config
コード例 #3
0
def get_config(_):
    """Get environment config."""

    ############################################################################
    # Sprite initialization
    ############################################################################

    # Agent
    agent_factors = distribs.Product(
        [distribs.Continuous('x', 0.1, 0.9),
         distribs.Continuous('y', 0.1, 0.9)],
        shape='circle', scale=0.1, c0=0.33, c1=1., c2=0.66,
    )

    # Predators
    shape_0 = 1.8 * np.array(
        [[-0.3, -0.3], [0.1, -0.7], [0.4, 0.6], [-0.1, 0.25]])
    shape_1 = 1.5 * np.array(
        [[-0.5, -0.3], [-0.1, -0.7], [0.7, 0.1], [0., -0.1], [-0.3, 0.25]])
    predator_factors = distribs.Product(
        [distribs.Continuous('x', 0.2, 0.8),
         distribs.Continuous('y', 0.2, 0.8),
         distribs.Discrete(
             'shape', [shape_0, shape_1, 'star_5', 'triangle', 'spoke_5']),
         distribs.Continuous('angle', 0., 2 * np.pi),
         distribs.Continuous('aspect_ratio', 0.75, 1.25),
         distribs.Continuous('scale', 0.1, 0.15),
         distribs.Continuous('x_vel', -0.03, 0.03),
         distribs.Continuous('y_vel', -0.03, 0.03),
         distribs.Continuous('angle_vel', -0.05, 0.05)],
        c0=0., c1=1., c2=0.8,
    )

    # Walls
    walls = shapes.border_walls(visible_thickness=0.05, c0=0., c1=0., c2=0.5)

    # Create callable initializer returning entire state
    agent_generator = sprite_generators.generate_sprites(
        agent_factors, num_sprites=1)
    predator_generator = sprite_generators.generate_sprites(
        predator_factors, num_sprites=5)

    def state_initializer():
        predators = predator_generator(
            disjoint=True, without_overlapping=walls)
        agent = agent_generator(without_overlapping=walls + predators)
        state = collections.OrderedDict([
            ('walls', walls),
            ('predators', predators),
            ('agent', agent),
        ])
        return state

    ############################################################################
    # Physics
    ############################################################################

    agent_friction_force = physics_lib.Drag(coeff_friction=0.25)
    asymmetric_collision = physics_lib.Collision(
        elasticity=1., symmetric=False, update_angle_vel=True)
    symmetric_collision = physics_lib.Collision(
        elasticity=1., symmetric=True, update_angle_vel=True)
    agent_wall_collision = physics_lib.Collision(
        elasticity=0., symmetric=False, update_angle_vel=False)
    
    forces = (
        (agent_friction_force, 'agent'),
        (symmetric_collision, 'predators', 'predators'),
        (asymmetric_collision, 'predators', 'walls'),
        (agent_wall_collision, 'agent', 'walls'),
    )
    
    physics = physics_lib.Physics(*forces, updates_per_env_step=10)

    ############################################################################
    # Task
    ############################################################################

    predator_task = tasks.ContactReward(
        -5, layers_0='agent', layers_1='predators')
    stay_alive_task = tasks.StayAlive(
        reward_period=20,
        reward_value=0.2,
    )
    task = tasks.CompositeTask(
        predator_task, stay_alive_task, timeout_steps=200)

    ############################################################################
    # Action space
    ############################################################################

    action_space = action_spaces.Joystick(
        scaling_factor=0.01, action_layers='agent')

    ############################################################################
    # Observer
    ############################################################################

    observer = observers.PILRenderer(
        image_size=(64, 64), anti_aliasing=1, color_to_rgb='hsv_to_rgb')

    ############################################################################
    # Final config
    ############################################################################

    config = {
        'state_initializer': state_initializer,
        'physics': physics,
        'task': task,
        'action_space': action_space,
        'observers': {'image': observer},
    }
    return config
コード例 #4
0
def get_config(_):
    """Get environment config."""

    ############################################################################
    # Sprite initialization
    ############################################################################

    # Agent
    agent_factors = distribs.Product(
        [
            distribs.Continuous('x', 0.1, 0.9),
            distribs.Continuous('y', 0.1, 0.9)
        ],
        shape='circle',
        scale=0.1,
        c0=0.33,
        c1=1.,
        c2=0.7,
    )

    # Predators
    predator_factors = distribs.Product(
        [
            distribs.Continuous('x', 0.1, 0.9),
            distribs.Continuous('y', 0.1, 0.9)
        ],
        shape='circle',
        scale=0.1,
        c0=0.,
        c1=1.,
        c2=0.8,
    )

    # Prey
    prey_factors = distribs.Product(
        [
            distribs.Continuous('x', 0.1, 0.9),
            distribs.Continuous('y', 0.1, 0.9)
        ],
        shape='circle',
        scale=0.1,
        c0=0.2,
        c1=1.,
        c2=1.,
    )

    # Boosters
    booster_factors = distribs.Product(
        [
            distribs.Continuous('x', 0.1, 0.9),
            distribs.Continuous('y', 0.1, 0.9)
        ],
        shape='triangle',
        scale=0.1,
        c0=0.6,
        c1=1.,
        c2=1.,
    )

    # Portals
    portal_factors = dict(shape='square', scale=0.1, c0=0., c1=0., c2=0.95)
    portal_sprites = [
        sprite.Sprite(x=0.125, y=0.125, **portal_factors),
        sprite.Sprite(x=0.875, y=0.875, **portal_factors),
    ]

    # Walls
    wall_color = dict(c0=0., c1=0., c2=0.5)
    island_wall_shape_0 = np.array([[0.2, 0.2], [0.4, 0.2], [0.4, 0.4],
                                    [0.2, 0.4]])
    island_wall_shapes = [
        island_wall_shape_0,
        island_wall_shape_0 + np.array([[0., 0.4]]),
        island_wall_shape_0 + np.array([[0.4, 0.4]]),
        island_wall_shape_0 + np.array([[0.4, 0.]]),
    ]
    island_walls = [
        sprite.Sprite(shape=shape, x=0., y=0., **wall_color)
        for shape in island_wall_shapes
    ]
    boundary_walls = shapes.border_walls(visible_thickness=0.05, **wall_color)
    walls = boundary_walls + island_walls

    # Callable sprite generators
    agent_generator = sprite_generators.generate_sprites(agent_factors,
                                                         num_sprites=1)
    predator_generator = sprite_generators.generate_sprites(predator_factors,
                                                            num_sprites=1)
    prey_generator = sprite_generators.generate_sprites(
        prey_factors, num_sprites=lambda: np.random.randint(2, 5))
    booster_generator = sprite_generators.generate_sprites(booster_factors,
                                                           num_sprites=2)

    # Create callable initializer returning entire state
    def state_initializer():
        portals = portal_sprites
        agent = agent_generator(without_overlapping=walls)
        predators = predator_generator(without_overlapping=walls + agent)
        boosters = booster_generator(without_overlapping=walls + agent)
        prey = prey_generator(without_overlapping=walls)
        state = collections.OrderedDict([
            ('walls', walls),
            ('portals', portals),
            ('boosters', boosters),
            ('prey', prey),
            ('predators', predators),
            ('agent', agent),
        ])
        return state

    ############################################################################
    # Physics
    ############################################################################

    agent_friction_force = physics_lib.Drag(coeff_friction=0.25)
    predator_friction_force = physics_lib.Drag(coeff_friction=0.05)
    predator_random_force = physics_lib.RandomForce(max_force_magnitude=0.02)
    prey_friction_force = physics_lib.Drag(coeff_friction=0.02)
    prey_random_force = physics_lib.RandomForce(max_force_magnitude=0.02)
    predator_attraction = physics_lib.DistanceForce(
        force_fn=physics_lib.linear_force_fn(zero_intercept=-0.002,
                                             slope=0.001))
    asymmetric_collision = physics_lib.Collision(elasticity=0.25,
                                                 symmetric=False,
                                                 update_angle_vel=False)

    forces = (
        (agent_friction_force, 'agent'),
        (predator_friction_force, 'predators'),
        (predator_random_force, 'predators'),
        (prey_friction_force, 'prey'),
        (prey_random_force, 'prey'),
        (predator_attraction, 'agent', 'predators'),
        (asymmetric_collision, ['agent', 'predators', 'prey'], 'walls'),
    )

    physics = physics_lib.Physics(*forces, updates_per_env_step=5)

    ############################################################################
    # Task
    ############################################################################

    predator_task = tasks.ContactReward(-5,
                                        layers_0='agent',
                                        layers_1='predators',
                                        reset_steps_after_contact=0)
    prey_task = tasks.ContactReward(1, layers_0='agent', layers_1='prey')
    reset_task = tasks.Reset(
        condition=lambda state: len(state['prey']) == 0,
        steps_after_condition=5,
    )
    task = tasks.CompositeTask(predator_task,
                               prey_task,
                               reset_task,
                               timeout_steps=400)

    ############################################################################
    # Action space
    ############################################################################

    action_space = action_spaces.Joystick(
        scaling_factor=0.01,
        action_layers='agent',
    )

    ############################################################################
    # Observer
    ############################################################################

    observer = observers.PILRenderer(
        image_size=(64, 64),
        anti_aliasing=1,
        color_to_rgb='hsv_to_rgb',
    )

    ############################################################################
    # Game rules
    ############################################################################

    disappear_rule = game_rules.VanishOnContact(vanishing_layer='prey',
                                                contacting_layer='agent')
    portal_rule = game_rules.Portal(teleporting_layer='agent',
                                    portal_layer='portals')
    rules = (disappear_rule, portal_rule, Booster())

    ############################################################################
    # Final config
    ############################################################################

    config = {
        'state_initializer': state_initializer,
        'physics': physics,
        'task': task,
        'action_space': action_space,
        'observers': {
            'image': observer
        },
        'game_rules': rules,
    }
    return config
コード例 #5
0
def get_config(_):
    """Get environment config."""

    ############################################################################
    # Sprite initialization
    ############################################################################

    # Agents
    agent_factors = distribs.Product(
        [distribs.Continuous('x', 0., 1.),
         distribs.Continuous('y', 0.35, 0.65)],
        shape='circle', scale=0.1, c1=1., c2=0.7,
    )
    agent_0_factors = distribs.Product([agent_factors], c0=0.2)
    agent_1_factors = distribs.Product([agent_factors], c0=0.1)
    agent_2_factors = distribs.Product([agent_factors], c0=0.)

    # Walls
    walls = shapes.border_walls(visible_thickness=0.05, c0=0., c1=0., c2=0.5)

    # Fountains
    fountain_factors = {
        'shape': 'circle', 'scale': 0.05, 'c0': 0.6, 'c1': 1., 'c2': _BAD_VALUE}
    fountains_across = np.linspace(0.1, 0.9, 6)
    fountains_up = np.linspace(0.75, 0.9, 2)
    fountains_grid_x, fountains_grid_y = np.meshgrid(fountains_across,
                                                     fountains_up)
    fountains_positions = zip(np.ravel(fountains_grid_x),
                              np.ravel(fountains_grid_y))
    fountain_sprites = [
        sprite.Sprite(x=x, y=y, **fountain_factors)
        for (x, y) in fountains_positions
    ]

    # Fruits
    fruit_factors = {
        'shape': 'circle', 'scale': 0.05, 'c0': 0.3, 'c1': 1., 'c2': _BAD_VALUE}
    fruits_across = np.linspace(0.1, 0.9, 6)
    fruits_up = np.linspace(0.1, 0.25, 2)
    fruits_grid_x, fruits_grid_y = np.meshgrid(fruits_across, fruits_up)
    fruits_positions = zip(np.ravel(fruits_grid_x), np.ravel(fruits_grid_y))
    fruit_sprites = [
        sprite.Sprite(x=x, y=y, **fruit_factors)
        for (x, y) in fruits_positions
    ]

    # Create callable initializer returning entire state
    agent_0_generator = sprite_generators.generate_sprites(
        agent_0_factors, num_sprites=1)
    agent_1_generator = sprite_generators.generate_sprites(
        agent_1_factors, num_sprites=1)
    agent_2_generator = sprite_generators.generate_sprites(
        agent_2_factors, num_sprites=1)

    def state_initializer():
        agent_0 = agent_0_generator(without_overlapping=walls)
        agent_1 = agent_1_generator(without_overlapping=walls)
        agent_2 = agent_2_generator(without_overlapping=walls)
        state = collections.OrderedDict([
            ('walls', walls),
            ('fountains', fountain_sprites),
            ('fruits', fruit_sprites),
            ('agent_2', agent_2),
            ('agent_1', agent_1),
            ('agent_0', agent_0),
        ])
        return state

    ############################################################################
    # Physics
    ############################################################################

    agent_friction_force = physics_lib.Drag(coeff_friction=0.25)
    asymmetric_collision = physics_lib.Collision(
        elasticity=0.25, symmetric=False)
    
    forces = (
        (agent_friction_force, ['agent_0', 'agent_1', 'agent_2']),
        (asymmetric_collision, ['agent_0', 'agent_1', 'agent_2'], 'walls'),
    )
    
    physics = physics_lib.Physics(*forces, updates_per_env_step=5)

    ############################################################################
    # Task
    ############################################################################

    task = tasks.ContactReward(
        1, layers_0='agent_0', layers_1='fruits',
        condition=lambda s_0, s_1: s_1.c2 > _VALUE_THRESHOLD,
    )

    ############################################################################
    # Action space
    ############################################################################

    action_space = action_spaces.Composite(
        agent_0=action_spaces.Joystick(
            scaling_factor=0.005, action_layers='agent_0'),
        agent_1=action_spaces.Joystick(
            scaling_factor=0.005, action_layers='agent_1'),
        agent_2=action_spaces.Joystick(
            scaling_factor=0.005, action_layers='agent_2'),
    )

    ############################################################################
    # Observer
    ############################################################################

    image_observer = observers.PILRenderer(
        image_size=(64, 64),
        anti_aliasing=1,
        color_to_rgb='hsv_to_rgb',
    )
    raw_state_observer = observers.RawState()  # needed by hand-crafted agents

    ############################################################################
    # Game rules
    ############################################################################

    def _spoil_fruit(sprite):
        sprite.c2 = _BAD_VALUE
    def _ripen_fruit(sprite):
        sprite.c2 = _GOOD_VALUE
    def _poison_fountain(sprite):
        sprite.c2 = _BAD_VALUE
    def _clean_fountain(sprite):
        sprite.c2 = _GOOD_VALUE

    def agents_contacting_layer(state, layer, value):
        n_contact = 0
        for s in state[layer]:
            if s.c2 != value:
                continue
            n_contact += (
                s.overlaps_sprite(state['agent_0'][0]) or 
                s.overlaps_sprite(state['agent_1'][0]) or 
                s.overlaps_sprite(state['agent_2'][0])
            )
        return n_contact
    
    poison_fountains = game_rules.ModifySprites(
        layers='fountains', modifier=_poison_fountain, sample_one=True,
        filter_fn=lambda s: s.c2 > _VALUE_THRESHOLD)
    poison_fountains = game_rules.ConditionalRule(
        condition=lambda s: agents_contacting_layer(s, 'fruits', _GOOD_VALUE),
        rules=poison_fountains,
    )
    ripen_fruits = game_rules.ModifySprites(
        layers='fruits', modifier=_ripen_fruit, sample_one=True,
        filter_fn=lambda s: s.c2 < _VALUE_THRESHOLD)
    ripen_fruits = game_rules.ConditionalRule(
        condition=lambda s: agents_contacting_layer(s, 'fountains', _BAD_VALUE),
        rules=ripen_fruits,
    )

    spoil_fruits = game_rules.ModifyOnContact(
        layers_0='fruits',
        layers_1=('agent_0', 'agent_1', 'agent_2'),
        modifier_0=_spoil_fruit,
        filter_0=lambda s: s.c2 > _VALUE_THRESHOLD)
    clean_fountains = game_rules.ModifyOnContact(
        layers_0='fountains',
        layers_1=('agent_0', 'agent_1', 'agent_2'),
        modifier_0=_clean_fountain,
        filter_0=lambda s: s.c2 < _VALUE_THRESHOLD)
    
    rules = (poison_fountains, spoil_fruits, ripen_fruits, clean_fountains)

    ############################################################################
    # Final config
    ############################################################################

    config = {
        'state_initializer': state_initializer,
        'physics': physics,
        'task': task,
        'action_space': action_space,
        'observers': {'image': image_observer, 'state': raw_state_observer},
        'game_rules': rules,
    }
    return config
コード例 #6
0
def _get_config(num_prey, num_predators):
    """Get environment config."""

    ############################################################################
    # Sprite initialization
    ############################################################################

    # Agent
    agent_factors = distribs.Product(
        [distribs.Continuous('x', 0., 1.),
         distribs.Continuous('y', 0., 1.)],
        scale=0.08, c0=0, c1=255, c2=0,
    )

    # Predators
    predator_factors = distribs.Product(
        [distribs.Continuous('x', 0., 1.),
         distribs.Continuous('y', 0., 1.),
         distribs.Continuous('x_vel', -0.02, 0.02),
         distribs.Continuous('y_vel', -0.02, 0.02),],
        scale=0.08, shape='circle', opacity=192, c0=255, c1=0, c2=0,
    )

    # Prey
    prey_factors = distribs.Product(
        [distribs.Continuous('x', 0., 1.),
         distribs.Continuous('y', 0., 1.),
         distribs.Continuous('x_vel', -0.02, 0.02),
         distribs.Continuous('y_vel', -0.02, 0.02),],
        scale=0.08, shape='circle', opacity=192, c0=255, c1=255, c2=0,
    )

    # Create callable initializer returning entire state
    predator_generator = sprite_generators.generate_sprites(
        predator_factors, num_sprites=num_predators)
    prey_generator = sprite_generators.generate_sprites(
        prey_factors, num_sprites=num_prey)

    def state_initializer():
        """Callable returning state at every episode reset."""
        agent = sprite.Sprite(**agent_factors.sample())
        predators = predator_generator(without_overlapping=(agent,))
        prey = prey_generator(without_overlapping=(agent,))

        state = collections.OrderedDict([
            ('prey', prey),
            ('predators', predators),
            ('agent', [agent]),
        ])
        return state

    ############################################################################
    # Physics
    ############################################################################

    agent_friction_force = physics_lib.Drag(coeff_friction=0.25)
    random_force = physics_lib.RandomForce(max_force_magnitude=0.01)
    predator_attraction = physics_lib.DistanceForce(
        physics_lib.linear_force_fn(zero_intercept=-0.001, slope=0.0005))
    prey_avoid = physics_lib.DistanceForce(
        physics_lib.linear_force_fn(zero_intercept=0.001, slope=-0.0005))

    forces = (
        (agent_friction_force, 'agent'),
        (random_force, ['predators', 'prey']),
        (predator_attraction, 'agent', 'predators'),
        (prey_avoid, 'agent', 'prey'),
    )

    constant_speed = physics_lib.ConstantSpeed(
        layer_names=['prey', 'predators'], speed=0.015)

    physics = physics_lib.Physics(
        *forces,
        updates_per_env_step=10,
        corrective_physics=[constant_speed],
    )

    ############################################################################
    # Task
    ############################################################################

    predator_task = tasks.ContactReward(
        -5, layers_0='agent', layers_1='predators', reset_steps_after_contact=0)
    prey_task = tasks.ContactReward(1, layers_0='agent', layers_1='prey')
    reset_task = tasks.Reset(
        condition=lambda state: len(state['prey']) == 0,
        steps_after_condition=5,
    )
    task = tasks.CompositeTask(
        reset_task, predator_task, prey_task, timeout_steps=300)

    ############################################################################
    # Action space
    ############################################################################

    action_space = action_spaces.Joystick(
        scaling_factor=0.025, action_layers='agent', control_velocity=True)

    ############################################################################
    # Observer
    ############################################################################

    observer = observers.PILRenderer(
        image_size=(64, 64),
        anti_aliasing=1,
        polygon_modifier=polygon_modifiers.TorusGeometry(
            ['agent', 'predators', 'prey']),
    )

    ############################################################################
    # Game rules
    ############################################################################

    prey_vanish = game_rules.VanishOnContact(
        vanishing_layer='prey', contacting_layer='agent')
    def _torus_position_wrap(s):
        s.position = np.remainder(s.position, 1)
    torus_position_wrap = game_rules.ModifySprites(
        ('agent', 'predators', 'prey'), _torus_position_wrap)

    rules = (prey_vanish, torus_position_wrap)

    ############################################################################
    # Final config
    ############################################################################

    config = {
        'state_initializer': state_initializer,
        'physics': physics,
        'task': task,
        'action_space': action_space,
        'observers': {'image': observer},
        'game_rules': rules,
    }
    return config
コード例 #7
0
ファイル: red_green.py プロジェクト: nwatters01/moog_js
def _get_config(num_obstacles, valid_step_range):
    """Get environment config.
    
    Args:
        num_obstacles: Int. Number of obstacles.
        valid_step_range: 2-iterable of ints. (min_num_steps, max_num_steps).
            All trials must have duration in this step range.
    
    Returns:
        config: Config dictionary to pass to environment constructor.
    """

    ############################################################################
    # Physics
    ############################################################################

    elastic_collision = physics_lib.Collision(elasticity=1.,
                                              symmetric=False,
                                              update_angle_vel=False)
    physics = physics_lib.Physics(
        (elastic_collision, 'ball', 'walls'),
        updates_per_env_step=10,
    )

    def _predict_trial_end(state):
        """Predict whether a trial will end in step range and true response.

        Args:
            state: OrderedDict of sprite layers. Initial state of environment.
        
        Returns:
            valid_trial: Bool. Whether trial will end with number of steps in
                valid_step_range.
            contact_color: Binary. 0 if ball will contact red first, 1 if it
                will contact green first.
        """
        for step in range(valid_step_range[1]):
            red_overlap = state['ball'][0].overlaps_sprite(state['red'][0])
            green_overlap = state['ball'][0].overlaps_sprite(state['green'][0])
            if red_overlap or green_overlap:
                if step < valid_step_range[0]:
                    return False, None
                else:
                    contact_color = 0 if red_overlap else 1
                    return True, contact_color
            physics.step(state)
        return False, None

    ############################################################################
    # Sprite initialization
    ############################################################################

    # Ball generator
    ball_factors = distribs.Product(
        [
            distribs.Continuous('x', 0.15, 0.85),
            distribs.Continuous('y', 0.15, 0.85),
            RadialVelocity(speed=0.03)
        ],
        scale=0.05,
        shape='circle',
        c0=64,
        c1=64,
        c2=255,
    )
    ball_generator = sprite_generators.generate_sprites(
        ball_factors,
        num_sprites=1,
        max_recursion_depth=100,
        fail_gracefully=True)

    # Obstacle generator
    obstacle_factors = distribs.Product(
        [
            distribs.Continuous('x', 0.2, 0.8),
            distribs.Continuous('y', 0.2, 0.8)
        ],
        scale=0.2,
        shape='square',
        c0=128,
        c1=128,
        c2=128,
    )
    obstacle_generator = sprite_generators.generate_sprites(
        obstacle_factors,
        num_sprites=2 + num_obstacles,
        max_recursion_depth=100,
        fail_gracefully=True)

    # Walls
    bottom_wall = [[-1, 0.1], [2, 0.1], [2, -1], [-1, -1]]
    top_wall = [[-1, 0.95], [2, 0.95], [2, 2], [-1, 2]]
    left_wall = [[0.05, -1], [0.05, 4], [-1, 4], [-1, -1]]
    right_wall = [[0.95, -1], [0.95, 4], [2, 4], [2, -1]]
    walls = [
        sprite.Sprite(shape=np.array(v), x=0, y=0, c0=128, c1=128, c2=128)
        for v in [bottom_wall, top_wall, left_wall, right_wall]
    ]

    def state_initializer():
        """Callable returning new state at each episode reset."""
        obstacles = obstacle_generator(disjoint=True)
        ball = ball_generator(without_overlapping=obstacles)
        if len(obstacles) < num_obstacles + 2 or not ball:
            # Max recursion depth failed trying to generate without overlapping
            return state_initializer()

        red = obstacles[0]
        green = obstacles[1]
        obstacles = obstacles[2:]

        # Set the colors of the red and green boxes
        red.c0 = 255
        red.c1 = 0
        red.c2 = 0
        green.c0 = 0
        green.c1 = 255
        green.c2 = 0

        # Create agent and response tokens at the bottom of the sreen
        agent = sprite.Sprite(x=0.5,
                              y=0.06,
                              shape='spoke_4',
                              scale=0.03,
                              c0=255,
                              c1=255,
                              c2=255)
        responses = [
            sprite.Sprite(x=0.6,
                          y=0.06,
                          shape='square',
                          scale=0.03,
                          c0=255,
                          c1=0,
                          c2=0),
            sprite.Sprite(x=0.4,
                          y=0.06,
                          shape='square',
                          scale=0.03,
                          c0=0,
                          c1=255,
                          c2=0),
        ]

        state = collections.OrderedDict([
            ('walls', walls + obstacles),
            ('red', [red]),
            ('green', [green]),
            ('ball', ball),
            ('responses', responses),
            ('agent', [agent]),
        ])

        # Rejection sampling if trial won't finish in valid step range
        original_ball_position = np.copy(ball[0].position)
        original_ball_velocity = np.copy(ball[0].velocity)
        valid_trial, contact_red = _predict_trial_end(state)
        if valid_trial:
            ball[0].position = original_ball_position
            ball[0].velocity = original_ball_velocity
            agent.metadata = {'true_contact_color': contact_red}
        else:
            return state_initializer()

        return state

    ############################################################################
    # Task
    ############################################################################

    def _reward_fn(sprite_agent, sprite_response):
        response_green = sprite_response.c0 < 128
        if sprite_agent.metadata['true_contact_color'] == response_green:
            return 1.
        else:
            return -1.

    contact_reward = tasks.ContactReward(
        reward_fn=_reward_fn,
        layers_0='agent',
        layers_1='responses',
        reset_steps_after_contact=10,
    )
    task = tasks.CompositeTask(contact_reward, timeout_steps=400)

    ############################################################################
    # Action space
    ############################################################################

    action_space = action_spaces.Grid(
        scaling_factor=0.015,
        action_layers='agent',
        control_velocity=True,
    )

    ############################################################################
    # Observer
    ############################################################################

    observer = observers.PILRenderer(image_size=(64, 64), anti_aliasing=1)

    ############################################################################
    # Game rules
    ############################################################################

    # Stop ball on contact with red or green box
    def _stop_ball(s):
        s.velocity = np.zeros(2)

    stop_ball = game_rules.ModifyOnContact(layers_0='ball',
                                           layers_1=('red', 'green'),
                                           modifier_0=_stop_ball)

    ############################################################################
    # Final config
    ############################################################################

    config = {
        'state_initializer': state_initializer,
        'physics': physics,
        'task': task,
        'action_space': action_space,
        'observers': {
            'image': observer
        },
        'game_rules': (stop_ball, ),
    }
    return config
コード例 #8
0
def get_config(_):
    """Get environment config."""

    ############################################################################
    # Sprite initialization
    ############################################################################

    # Agent
    agent = sprite.Sprite(x=0.5,
                          y=0.5,
                          shape='circle',
                          scale=0.04,
                          c0=0.33,
                          c1=1.,
                          c2=0.66)
    annulus_vertices = shapes.annulus_vertices(inner_radius=0.08,
                                               outer_radius=0.3)
    agent_annulus = sprite.Sprite(x=0.5,
                                  y=0.5,
                                  shape=annulus_vertices,
                                  scale=1.,
                                  c0=0.6,
                                  c1=1.,
                                  c2=1.)

    # Predator generator
    max_predator_vel = 0.02
    predator_pos = _get_boundary_pos_distribution(_FIELD_BUFFER)
    predator_vel = _get_vel_distribution(0.5 * max_predator_vel,
                                         max_predator_vel)
    predator_factors = distribs.Product(
        [predator_pos, predator_vel,
         distribs.Continuous('scale', 0.07, 0.13)],
        shape='circle',
        c0=0.,
        c1=1.,
        c2=0.8,
    )

    # Prey generator
    max_prey_vel = 0.01
    prey_pos = _get_boundary_pos_distribution(_FIELD_BUFFER)
    prey_vel = _get_vel_distribution(0.5 * max_prey_vel, max_prey_vel)
    prey_factors = distribs.Product(
        [prey_pos, prey_vel,
         distribs.Continuous('scale', 0.07, 0.13)],
        shape='circle',
        c0=0.2,
        c1=1.,
        c2=1.,
    )

    # Grid
    grid = shapes.grid_lines(grid_x=_GRID_SIZE,
                             grid_y=_GRID_SIZE,
                             buffer_border=1.,
                             c0=0.,
                             c1=0.,
                             c2=0.5)

    def state_initializer():
        state = collections.OrderedDict([
            ('grid', grid),
            ('prey', []),
            ('agent', [agent]),
            ('predators', []),
            ('agent_annulus', [agent_annulus]),
        ])
        return state

    ############################################################################
    # Physics
    ############################################################################

    agent_friction_force = physics_lib.Drag(coeff_friction=0.25)
    physics = physics_lib.Physics(
        (agent_friction_force, ['agent', 'agent_annulus']),
        updates_per_env_step=10,
    )

    ############################################################################
    # Task
    ############################################################################

    def _predator_reward_fn(_, predator_sprite):
        return -2. * predator_sprite.scale

    predator_task = tasks.ContactReward(
        reward_fn=_predator_reward_fn,
        layers_0='agent',
        layers_1='predators',
        reset_steps_after_contact=0,
    )

    def _prey_reward_fn(_, prey_sprite):
        return prey_sprite.scale

    prey_task = tasks.ContactReward(
        reward_fn=_prey_reward_fn,
        layers_0='agent',
        layers_1='prey',
    )
    task = tasks.CompositeTask(predator_task, prey_task)

    ############################################################################
    # Action space
    ############################################################################

    action_space = action_spaces.Joystick(
        scaling_factor=0.003,
        action_layers=('agent', 'agent_annulus'),
        constrained_lr=False,
    )

    ############################################################################
    # Observer
    ############################################################################

    _polygon_modifier = observers.polygon_modifiers.FirstPersonAgent(
        agent_layer='agent')
    observer = observers.PILRenderer(
        image_size=(64, 64),
        anti_aliasing=1,
        color_to_rgb='hsv_to_rgb',
        polygon_modifier=_polygon_modifier,
    )

    ############################################################################
    # Game rules
    ############################################################################

    # Make predators appear randomly
    predator_appear_generator = sprite_generators.generate_sprites(
        predator_factors, num_sprites=1)
    predator_appear = game_rules.ConditionalRule(
        condition=lambda state: np.random.binomial(1, p=0.5),
        rules=game_rules.CreateSprites('predators', predator_appear_generator),
    )

    # Make prey appear randomly
    prey_appear_generator = sprite_generators.generate_sprites(prey_factors,
                                                               num_sprites=1)
    prey_appear = game_rules.ConditionalRule(
        condition=lambda state: np.random.binomial(1, p=0.2),
        rules=game_rules.CreateSprites('prey', prey_appear_generator),
    )

    # Make predators and prey vanish when they are distant enough and moving
    # away.
    vanish_range = [-1. * _VANISH_DIST, 1. + _VANISH_DIST]

    def _should_vanish(s):
        pos_too_small = (s.position < vanish_range[0]) * (s.velocity < 0.)
        pos_too_large = (s.position > vanish_range[1]) * (s.velocity > 0.)
        return any(pos_too_small) or any(pos_too_large)

    predator_vanish = game_rules.VanishByFilter('predators', _should_vanish)
    prey_vanish = game_rules.VanishByFilter('prey', _should_vanish)

    # Keep agent near center
    keep_near_center = game_rules.KeepNearCenter(
        agent_layer='agent',
        layers_to_center=['agent_annulus', 'predators', 'prey'],
        grid_x=_GRID_SIZE,
    )

    # Make prey vanish when contacted by agent
    prey_caught = game_rules.VanishOnContact(vanishing_layer='prey',
                                             contacting_layer='agent')

    rules = (predator_appear, prey_appear, prey_vanish, predator_vanish,
             keep_near_center, prey_caught)

    ############################################################################
    # Final config
    ############################################################################

    config = {
        'state_initializer': state_initializer,
        'physics': physics,
        'task': task,
        'action_space': action_space,
        'observers': {
            'image': observer
        },
        'game_rules': rules,
    }
    return config