コード例 #1
0
def test_robust_normalise_returns_dataframe():
    # create test DataFrame
    x = np.random.randn(50).tolist()
    y = np.random.randn(50).tolist()
    z = np.random.randn(50).tolist()
    plate = (["plate1"] * 10 + ["plate2"] * 10 + ["plate3"] * 10 +
             ["plate4"] * 10 + ["plate5"] * 10)
    compound = (["drug"] * 8 + ["DMSO"] * 2) * 5
    colnames = ["A", "B", "C", "Metadata_plate", "Metadata_compound"]
    df = pd.DataFrame(list(zip(x, y, z, plate, compound)), columns=colnames)
    out = normalise.robust_normalise(df, plate_id="Metadata_plate")
    assert isinstance(out, pd.DataFrame)
コード例 #2
0
ファイル: test_normalise.py プロジェクト: Swarchal/morar
def test_robust_normalise_returns_dataframe():
    # create test DataFrame
    x = np.random.randn(50).tolist()
    y = np.random.randn(50).tolist()
    z = np.random.randn(50).tolist()
    plate = (
        ["plate1"] * 10
        + ["plate2"] * 10
        + ["plate3"] * 10
        + ["plate4"] * 10
        + ["plate5"] * 10
    )
    compound = (["drug"] * 8 + ["DMSO"] * 2) * 5
    colnames = ["A", "B", "C", "Metadata_plate", "Metadata_compound"]
    df = pd.DataFrame(list(zip(x, y, z, plate, compound)), columns=colnames)
    out = normalise.robust_normalise(df, plate_id="Metadata_plate")
    assert isinstance(out, pd.DataFrame)
コード例 #3
0
def test_robust_normalise_extra_metadata_cols():
    # dataframe with weird columns names
    x = np.random.randn(50).tolist()
    y = np.random.randn(50).tolist()
    z = np.random.randn(50).tolist()
    plate = (["plate1"] * 10 + ["plate2"] * 10 + ["plate3"] * 10 +
             ["plate4"] * 10 + ["plate5"] * 10)
    compound = (["drug"] * 8 + ["DMSO"] * 2) * 5
    extra_metadata = ["A", "B"] * 25
    colnames = ["A", "B", "C", "meta_plate", "meta_cmpd", "metadata_extra"]
    df = pd.DataFrame(list(zip(x, y, z, plate, compound, extra_metadata)))
    df.columns = colnames
    out = normalise.robust_normalise(df,
                                     metadata_string="meta",
                                     compound="meta_cmpd",
                                     plate_id="meta_plate")
    assert df.shape == out.shape
    assert df.columns.tolist() == out.columns.tolist()
コード例 #4
0
def test_robust_normalise_non_default_cols():
    # dataframe with weird columns names
    x = np.random.randn(50).tolist()
    y = np.random.randn(50).tolist()
    z = np.random.randn(50).tolist()
    plate = ["plate1"] * 10 + ["plate2"] * 10 + ["plate3"] * 10 + [
        "plate4"
    ] * 10 + ["plate5"] * 10
    compound = (["drug"] * 8 + ["DMSO"] * 2) * 5
    colnames = ["A", "B", "C", "meta_plate", "meta_cmpd"]
    non_default_df = pd.DataFrame(list(zip(x, y, z, plate, compound)),
                                  columns=colnames)
    out = normalise.robust_normalise(non_default_df,
                                     metadata_string="meta",
                                     compound="meta_cmpd",
                                     plate_id="meta_plate")
    assert isinstance(out, pd.DataFrame)
    assert out.shape == non_default_df.shape
コード例 #5
0
ファイル: test_normalise.py プロジェクト: Swarchal/morar
def test_robust_normalise_extra_metadata_cols():
    # dataframe with weird columns names
    x = np.random.randn(50).tolist()
    y = np.random.randn(50).tolist()
    z = np.random.randn(50).tolist()
    plate = (
        ["plate1"] * 10
        + ["plate2"] * 10
        + ["plate3"] * 10
        + ["plate4"] * 10
        + ["plate5"] * 10
    )
    compound = (["drug"] * 8 + ["DMSO"] * 2) * 5
    extra_metadata = ["A", "B"] * 25
    colnames = ["A", "B", "C", "meta_plate", "meta_cmpd", "metadata_extra"]
    df = pd.DataFrame(list(zip(x, y, z, plate, compound, extra_metadata)))
    df.columns = colnames
    out = normalise.robust_normalise(
        df, metadata_string="meta", compound="meta_cmpd", plate_id="meta_plate"
    )
    assert df.shape == out.shape
    assert df.columns.tolist() == out.columns.tolist()
コード例 #6
0
ファイル: test_normalise.py プロジェクト: Swarchal/morar
def test_robust_normalise_non_default_cols():
    # dataframe with weird columns names
    x = np.random.randn(50).tolist()
    y = np.random.randn(50).tolist()
    z = np.random.randn(50).tolist()
    plate = (
        ["plate1"] * 10
        + ["plate2"] * 10
        + ["plate3"] * 10
        + ["plate4"] * 10
        + ["plate5"] * 10
    )
    compound = (["drug"] * 8 + ["DMSO"] * 2) * 5
    colnames = ["A", "B", "C", "meta_plate", "meta_cmpd"]
    non_default_df = pd.DataFrame(list(zip(x, y, z, plate, compound)), columns=colnames)
    out = normalise.robust_normalise(
        non_default_df,
        metadata_string="meta",
        compound="meta_cmpd",
        plate_id="meta_plate",
    )
    assert isinstance(out, pd.DataFrame)
    assert out.shape == non_default_df.shape