def __init__(self, options): self.options = options self.grid_size = int(options['mesh_size'][0] / options['downsample_by']) self.max_domain = 2 * np.pi # Not variable for now. Domain is fixed to [0, 2*pi]x[0, 2*pi] self.filter_size = options['filter_size'] self.batch_size = options['batch_size'] self.dt = options['dt'] self.boundary_cond = options['boundary_cond'] self.max_order = options['max_order'] self.iterations = options['iterations'] # Number of filters: self.N = int((self.max_order + 2) * (self.max_order + 1) / 2) # Positioning the 1 in the moment-matrices self.ind = mm.index(self.filter_size) self.coefs = [] # Storing the coefficients here self.M = [] # Storing the moment-matrices here # Generating the data self.batch, self.inits = gd.generate(options)
def __init__(self, options): self.options = options self.grid_size = 50 # Only fixed it to 50 for this test. Shouldn't do it in general! self.max_domain = 2 * np.pi # Not variable for now. Domain is fixed to [0, 2*pi]x[0, 2*pi] self.filter_size = options['filter_size'] self.batch_size = options['batch_size'] self.dt = options['dt'] self.boundary_cond = options['boundary_cond'] self.max_order = options['max_order'] self.iterations = options['iterations'] # Number of filters: self.N = int((self.max_order + 2) * (self.max_order + 1) / 2) # Positioning the 1 in the moment-matrices self.ind = mm.index(self.filter_size) self.coefs = [] # Storing the coefficients here self.M = [] # Storing the moment-matrices here # Generating the data self.batch, self.inits = gd.generate( options, method='low_freq') # For inference