コード例 #1
0
def inflect_word(lemma: LexiconEntry, tag: str, rules_tr, model, **kwargs):
    def _extract_tag(word):
        return ''.join(tokenize_word(word)[1])

    max_results = kwargs['max_results'] if 'max_results' in kwargs else None
    lookup_results = rules_tr.lookup(lemma.symstr)
    inflections = []
    for w, c in lookup_results:
        if _extract_tag(w) == tag:
            try:
                inflections.append(LexiconEntry(unnormalize_word(w)))
            except Exception as e:
                logging.getLogger('main').warning(e)
    edges = []
    for infl in inflections:
        for rule in extract_all_rules(lemma, infl):
            if rule in model.rule_set:
                edge = GraphEdge(lemma, infl, rule)
                edge.attr['cost'] = model.edge_cost(edge)
                edges.append(edge)
    edges = sorted(edges, key=lambda x: x.attr['cost'])
    if max_results is not None:
        edges = edges[:max_results]
    if not edges:
        return [(lemma, '---' + tag, '---')]
    return [(lemma, e.target, e.attr['cost']) for e in edges]
コード例 #2
0
ファイル: negex.py プロジェクト: maciejjan/morle
 def _sample_process(rules: List[Rule], _output_fun: Callable[...,
                                                              None],
                     lexicon: Lexicon, sample_size: int) -> None:
     transducers = [r.to_fst() for r in rules]
     for tr in transducers:
         tr.convert(hfst.ImplementationType.HFST_OL_TYPE)
     seen_ids = set()
     num = 0
     while num < sample_size:
         w_id = random.randrange(len(lexicon))
         r_id = random.randrange(len(rules))
         source = lexicon[w_id]
         rule = rules[r_id]
         lookup_results = \
             sorted(list(map(lambda x: x[0].replace(hfst.EPSILON, ''),
                             transducers[r_id].lookup(source.symstr))))
         if lookup_results:
             t_id = random.randrange(len(lookup_results))
             if (w_id, r_id, t_id) in seen_ids:
                 continue
             seen_ids.add((w_id, r_id, t_id))
             target = None
             try:
                 target = LexiconEntry(lookup_results[t_id])
                 if target.symstr not in lexicon.items_by_symstr:
                     _output_fun(GraphEdge(source, target, rule))
                     num += 1
             except Exception as e:
                 logging.getLogger('main').debug(\
                    'Exception during negative sampling: {}'.format(e))
コード例 #3
0
ファイル: samplers.py プロジェクト: maciejjan/morle
    def _compute_leaf_prob(self):
        logging.getLogger('main').info('Computing leaf probabilities...')
        self.leaf_prob = np.ones((len(self.lexicon), len(self.tagset)),
                                 dtype=np.float64)
        edge_set = EdgeSet(lexicon)

        def _empty_edge_set(edge_set):
            lexicon = edge_set.lexicon
            n = len(edge_set)
            probs = 1 - self.model.edges_prob(edge_set)
            for e_id, edge in enumerate(edge_set):
                word = lexicon.get_by_symstr(''.join(edge.source.word))[0]
                w_id = lexicon.get_id(word)
                t_id = self.tag_idx[edge.source.tag]
                self.leaf_prob[w_id, t_id] *= probs[e_id]
            edge_set = EdgeSet(lexicon)
            print(n)
            return edge_set

        lexicon_tr = self.lexicon.to_fst()
        lexicon_tr.concatenate(FST.generator(self.tagset))
        rules_tr = self.model.rule_set.to_fst()
        tr = hfst.HfstTransducer(lexicon_tr)
        tr.compose(rules_tr)
        tr.determinize()
        tr.minimize()
        FST.save_transducer(tr, 'tr.fsm')

        tr_path = full_path('tr.fsm')
        cmd = ['hfst-fst2strings', tr_path]
        p = subprocess.Popen(cmd,
                             stdin=subprocess.PIPE,
                             stdout=subprocess.PIPE,
                             stderr=subprocess.DEVNULL,
                             universal_newlines=True,
                             bufsize=1)
        while True:
            line = p.stdout.readline().strip()
            if line:
                w1, w2 = line.split(':')
                n1 = LexiconEntry(w1)
                n2 = LexiconEntry(w2)
                rules = extract_all_rules(n1, n2)
                for rule in rules:
                    if rule in rule_set:
                        edge_set.add(GraphEdge(n1, n2, rule))
            else:
                break
            if len(edge_set) > 300000:
                edge_set = _empty_edge_set(edge_set)
        edge_set = _empty_edge_set(edge_set)
コード例 #4
0
ファイル: possible-edges.py プロジェクト: maciejjan/morle
def compute_possible_edges(lexicon: Lexicon, rule_set: RuleSet) -> EdgeSet:
    # build the transducer
    lexicon_tr = lexicon.to_fst()
    tag_seqs = extract_tag_symbols_from_rules(rule_set)
    if tag_seqs:
        lexicon_tr.concatenate(FST.generator(tag_seqs))
    rules_tr = rule_set.to_fst()
    tr = hfst.HfstTransducer(lexicon_tr)
    tr.compose(rules_tr)
    tr.determinize()
    tr.minimize()
    lexicon_tr.invert()
    tr.compose(lexicon_tr)
    tr.determinize()
    tr.minimize()
    FST.save_transducer(tr, 'tr.fsm')

    tr_path = full_path('tr.fsm')
    cmd = ['hfst-fst2strings', tr_path]
    p = subprocess.Popen(cmd,
                         stdin=subprocess.PIPE,
                         stdout=subprocess.PIPE,
                         stderr=subprocess.DEVNULL,
                         universal_newlines=True,
                         bufsize=1)
    edge_set = EdgeSet(lexicon)
    while True:
        line = p.stdout.readline().strip()
        if line:
            w1, w2 = line.split(':')
            w1_without_tag = re.sub(shared.compiled_patterns['tag'], '', w1)
            w2_without_tag = re.sub(shared.compiled_patterns['tag'], '', w2)
            if w1_without_tag != w2_without_tag:
                n1 = LexiconEntry(w1)
                n2 = LexiconEntry(w2)
                rules = algorithms.align.extract_all_rules(n1, n2)
                for rule in rules:
                    if rule in rule_set:
                        n1_wt = lexicon.get_by_symstr(w1_without_tag)[0]
                        n2_wt = lexicon.get_by_symstr(w2_without_tag)[0]
                        edge_set.add(GraphEdge(n1_wt, n2_wt, rule))
        else:
            break
    return edge_set
コード例 #5
0
def load_graph(filename, lexicon, threshold=0.0):
    edge_set = EdgeSet(lexicon)
    weights = []
    rules = {}
    for word_1, word_2, rule_str, edge_freq_str in read_tsv_file(filename):
        try:
            edge_freq = float(edge_freq_str)
            if edge_freq < threshold:
                continue
            if rule_str not in rules:
                rules[rule_str] = Rule.from_string(rule_str)
            edge = GraphEdge(lexicon[word_1],
                             lexicon[word_2],
                             rules[rule_str],
                             weight=edge_freq)
            edge_set.add(edge)
            weights.append(edge_freq)
        except ValueError:
            pass
    return FullGraph(lexicon, edge_set), np.array(weights)
コード例 #6
0
ファイル: samplers.py プロジェクト: maciejjan/morle
 def _untag_edge(lexicon, edge):
     source = lexicon.get_by_symstr(''.join(edge.source.word))[0]
     target = lexicon.get_by_symstr(''.join(edge.target.word))[0]
     rule = Rule(edge.rule.subst)
     return GraphEdge(source, target, rule)
コード例 #7
0
 def analyze(self, target :LexiconEntry, compute_cost=True, **kwargs) \
            -> List[GraphEdge]:
     # TODO 1a. if predict_tag: get possible tags from the tag predictor
     # 1. get possible sources for the given target
     sources = set(sum([self.lexicon.get_by_symstr(word) \
                        for word, cost in self.fst.lookup(target.symstr)],
                       []))
     results = []
     # 2. get possible (source, rule) pairs (extract rules) and score them
     edge_set = EdgeSet(self.lexicon)
     for source in sources:
         rules = extract_all_rules(source, target)
         for rule in rules:
             if rule in self.model.rule_set:
                 if self.predict_vec:
                     target_pr = target.copy()
                     edge = GraphEdge(source, target_pr, rule)
                     target_pr.vec = self.model.predict_target_feature_vec(
                         edge)
                     edge_set.add(edge)
                 else:
                     edge_set.add(GraphEdge(source, target, rule))
     # back-formation
     if self.enable_back_formation and \
             (self.max_results is None or len(edge_set) < self.max_results):
         lookup_results = set()
         for w, c in self.inv_rules_tr.lookup(target.symstr):
             try:
                 lookup_results.add(unnormalize_word(\
                     re.sub(hfst.EPSILON, '', w)))
             except Exception as e:
                 logging.getLogger('main').warning(str(e))
         sources = []
         for word in lookup_results:
             try:
                 sources.append(LexiconEntry(word))
             except Exception as e:
                 logging.getLogger('main').warning(str(e))
         for source in sources:
             rules = extract_all_rules(source, target)
             for rule in rules:
                 if rule in self.model.rule_set:
                     edge_set.add(GraphEdge(source, target, rule))
     # analysis as root
     if self.include_roots:
         edge_set.add(GraphEdge(None, target, None))
     # scoring
     # FIXME this is inefficient and may break on some model components
     #   that don't have the method .edge_cost()
     for edge in edge_set:
         edge.attr['cost'] = 0
         if edge.source is not None:
             edge.attr['cost'] += self.model.edge_cost(edge)
             if edge.source not in self.lexicon:
                 edge.attr['cost'] += self.model.root_cost(edge.source)
         else:
             edge.attr['cost'] += self.model.root_cost(edge.target)
     results = [edge for edge in edge_set]
     # 4. sort the analyses according to the cost
     results.sort(key=lambda r: r.attr['cost'])
     if self.max_results is not None:
         results = results[:self.max_results]
     return results
コード例 #8
0
    def test_complete_sample(self) -> None:
        'Test a sample consisting of all possible negative edges.'
        words = [
            'machen', 'macht', 'mache', 'Sachen', 'Sache', 'anwinkeln',
            'anzuwinkeln'
        ]
        rules = [\
            ':/en:t___:',
            ':/n:___:',
            ':/a:ä/:er___:',
            ':/:zu/:___:'
        ]
        positive_edges = [\
            ('machen', 'macht', ':/en:t___:'),
            ('machen', 'mache', ':/n:___:'),
            ('Sachen', 'Sache', ':/n:___:'),
            ('anwinkeln', 'anzuwinkeln', ':/:zu/:___:'),
        ]
        expected_negative_edges = [\
            ('Sachen', '{CAP}sacht', ':/en:t___:'),
            ('anwinkeln', 'anwinkel', ':/n:___:'),
            ('anzuwinkeln', 'anzuwinkel', ':/n:___:'),
            ('machen', 'mächener', ':/a:ä/:er___:'),
            ('macht', 'mächter', ':/a:ä/:er___:'),
            ('mache', 'mächeer', ':/a:ä/:er___:'),
            ('Sachen', '{CAP}sächener', ':/a:ä/:er___:'),
            ('Sache', '{CAP}sächeer', ':/a:ä/:er___:'),
            ('machen', 'mzuachen', ':/:zu/:___:'),
            ('machen', 'mazuchen', ':/:zu/:___:'),
            ('machen', 'maczuhen', ':/:zu/:___:'),
            ('machen', 'machzuen', ':/:zu/:___:'),
            ('machen', 'machezun', ':/:zu/:___:'),
            ('mache', 'mzuache', ':/:zu/:___:'),
            ('mache', 'mazuche', ':/:zu/:___:'),
            ('mache', 'maczuhe', ':/:zu/:___:'),
            ('mache', 'machzue', ':/:zu/:___:'),
            ('macht', 'mzuacht', ':/:zu/:___:'),
            ('macht', 'mazucht', ':/:zu/:___:'),
            ('macht', 'maczuht', ':/:zu/:___:'),
            ('macht', 'machzut', ':/:zu/:___:'),
            ('Sachen', '{CAP}zusachen', ':/:zu/:___:'),
            ('Sachen', '{CAP}szuachen', ':/:zu/:___:'),
            ('Sachen', '{CAP}sazuchen', ':/:zu/:___:'),
            ('Sachen', '{CAP}saczuhen', ':/:zu/:___:'),
            ('Sachen', '{CAP}sachzuen', ':/:zu/:___:'),
            ('Sachen', '{CAP}sachezun', ':/:zu/:___:'),
            ('Sache', '{CAP}zusache', ':/:zu/:___:'),
            ('Sache', '{CAP}szuache', ':/:zu/:___:'),
            ('Sache', '{CAP}sazuche', ':/:zu/:___:'),
            ('Sache', '{CAP}saczuhe', ':/:zu/:___:'),
            ('Sache', '{CAP}sachzue', ':/:zu/:___:'),
            ('anwinkeln', 'azunwinkeln', ':/:zu/:___:'),
            ('anwinkeln', 'anwzuinkeln', ':/:zu/:___:'),
            ('anwinkeln', 'anwizunkeln', ':/:zu/:___:'),
            ('anwinkeln', 'anwinzukeln', ':/:zu/:___:'),
            ('anwinkeln', 'anwinkzueln', ':/:zu/:___:'),
            ('anwinkeln', 'anwinkezuln', ':/:zu/:___:'),
            ('anwinkeln', 'anwinkelzun', ':/:zu/:___:'),
            ('anzuwinkeln', 'azunzuwinkeln', ':/:zu/:___:'),
            ('anzuwinkeln', 'anzuzuwinkeln', ':/:zu/:___:'),
            ('anzuwinkeln', 'anzzuuwinkeln', ':/:zu/:___:'),
            ('anzuwinkeln', 'anzuwzuinkeln', ':/:zu/:___:'),
            ('anzuwinkeln', 'anzuwizunkeln', ':/:zu/:___:'),
            ('anzuwinkeln', 'anzuwinzukeln', ':/:zu/:___:'),
            ('anzuwinkeln', 'anzuwinkzueln', ':/:zu/:___:'),
            ('anzuwinkeln', 'anzuwinkezuln', ':/:zu/:___:'),
            ('anzuwinkeln', 'anzuwinkelzun', ':/:zu/:___:')
        ]
        expected_weights = {\
            ':/en:t___:' : 1.0,
            ':/n:___:' : 1.0,
            ':/a:ä/:er___:' : 1.0,
            ':/:zu/:___:' : 41/40       # the word "anzuzuwinkeln" can be
                                        # derived in two different ways, so
                                        # it is counted double in domsize
                                        # computation, but sampled only once;
                                        # such cases are very rare, so they
                                        # shouldn't influence the weights much
        }

        lexicon = Lexicon(LexiconEntry(word) for word in words)
        lex_fst = lexicon.to_fst()
        rule_set = RuleSet()
        for rule_str in rules:
            rule = Rule.from_string(rule_str)
            rule_set.add(rule, rule.compute_domsize(lex_fst))
        edge_iter = (GraphEdge(lexicon[source], lexicon[target],
                               rule_set[rule]) \
                     for (source, target, rule) in positive_edges)
        edge_set = EdgeSet(lexicon, edge_iter)

        negex_sampler = NegativeExampleSampler(rule_set)
        sample_size = len(expected_negative_edges)
        sample = negex_sampler.sample(lexicon,
                                      sample_size,
                                      show_progressbar=False)
        sample_weights = negex_sampler.compute_sample_weights(sample, edge_set)

        self.assertEqual(rule_set.get_domsize(rule_set[0]), 2)
        self.assertEqual(rule_set.get_domsize(rule_set[1]), 4)
        self.assertEqual(rule_set.get_domsize(rule_set[2]), 5)
        self.assertEqual(rule_set.get_domsize(rule_set[3]), 42)
        self.longMessage = False
        for edge in edge_set:
            self.assertNotIn(edge,
                             sample,
                             msg='positive edge: {} in sample'.format(edge))
        for source, target, rule in expected_negative_edges:
            edge = GraphEdge(lexicon[source], LexiconEntry(target),
                             rule_set[rule])
            self.assertIn(edge, sample, msg='{} not in sample'.format(edge))
        self.longMessage = True
        for i, edge in enumerate(sample):
            self.assertAlmostEqual(sample_weights[i],
                                   expected_weights[str(edge.rule)],
                                   msg='for edge {}'.format(edge))