コード例 #1
0
def solve(x0,
          risk_alphas,
          loadings,
          srisk,
          cost_per_trade=DEFAULT_COST,
          max_risk=0.01):
    N = len(x0)
    #  don't hold no risk data (likely dead)
    lim = np.where(srisk.isnull(), 0.0, 1.0)
    loadings = loadings.fillna(0)
    srisk = srisk.fillna(0)
    risk_alphas = risk_alphas.fillna(0)

    with Model() as m:
        w = m.variable(N, Domain.inRange(-lim, lim))
        longs = m.variable(N, Domain.greaterThan(0))
        shorts = m.variable(N, Domain.greaterThan(0))
        gross = m.variable(N, Domain.greaterThan(0))

        m.constraint(
            "leverage_consistent",
            Expr.sub(gross, Expr.add(longs, shorts)),
            Domain.equalsTo(0),
        )

        m.constraint("net_consistent", Expr.sub(w, Expr.sub(longs, shorts)),
                     Domain.equalsTo(0.0))

        m.constraint("leverage_long", Expr.sum(longs), Domain.lessThan(1.0))

        m.constraint("leverage_short", Expr.sum(shorts), Domain.lessThan(1.0))

        buys = m.variable(N, Domain.greaterThan(0))
        sells = m.variable(N, Domain.greaterThan(0))

        gross_trade = Expr.add(buys, sells)
        net_trade = Expr.sub(buys, sells)
        total_gross_trade = Expr.sum(gross_trade)

        m.constraint(
            "net_trade",
            Expr.sub(w, net_trade),
            Domain.equalsTo(np.asarray(x0)),  #  cannot handle series
        )

        #  add risk constraint
        vol = m.variable(1, Domain.lessThan(max_risk))
        stacked = Expr.vstack(vol.asExpr(), Expr.mulElm(w, srisk.values))
        stacked = Expr.vstack(stacked, Expr.mul(loadings.values.T, w))
        m.constraint("vol-cons", stacked, Domain.inQCone())

        alphas = risk_alphas.dot(np.vstack([loadings.T, np.diag(srisk)]))

        gain = Expr.dot(alphas, net_trade)
        loss = Expr.mul(cost_per_trade, total_gross_trade)
        m.objective(ObjectiveSense.Maximize, Expr.sub(gain, loss))

        m.solve()
        result = pd.Series(w.level(), srisk.index)
        return result
コード例 #2
0
 def __Update_Z_Constr(pure_model: Model, constr_z: Dict[int,
                                                         int]) -> Model:
     Z = pure_model.getVariable('Z')
     if len(constr_z) == 1:
         for key, value in constr_z.items():  # only one iteration
             pure_model.constraint('BB', Z.index(key),
                                   Domain.equalsTo(value))
     if len(constr_z) >= 2:
         expression = Expr.vstack([Z.index(key) for key in constr_z.keys()])
         values = [value for key, value in constr_z.items()]
         pure_model.constraint('BB', expression, Domain.equalsTo(values))
     return pure_model
 def Update_Z_Constr(self):
     self.Remove_Z_Constr()
     Z = self.model.getVariable('Z')
     if len(self.constr) == 1:
         for key, value in self.constr.items():  # only one iteration
             self.model.constraint('BB', Z.index(key),
                                   Domain.equalsTo(value))
     if len(self.constr) >= 2:
         expression = Expr.vstack(
             [Z.index(key) for key in self.constr.keys()])
         values = [value for key, value in self.constr.items()]
         self.model.constraint('BB', expression, Domain.equalsTo(values))
コード例 #4
0
def __rotated_quad_cone(model, expr1, expr2, expr3):
    model.constraint(Expr.vstack(expr1, expr2, expr3), Domain.inRotatedQCone())
コード例 #5
0
def __quad_cone(model, expr1, expr2):
    model.constraint(Expr.vstack(expr1, expr2), Domain.inQCone())
コード例 #6
0
ファイル: solver.py プロジェクト: tschm/MosekRegression
def __rotated_quad_cone(model, expr1, expr2, expr3):
    model.constraint(Expr.vstack(expr1, expr2, expr3), Domain.inRotatedQCone())
コード例 #7
0
ファイル: solver.py プロジェクト: tschm/MosekRegression
def __quad_cone(model, expr1, expr2):
    model.constraint(Expr.vstack(expr1, expr2), Domain.inQCone())
コード例 #8
0
    def Build_Co_Model(self):
        r = len(self.roads)
        mu, sigma = self.mu, self.sigma
        m, n, r = self.m, self.n, len(self.roads)
        f, h = self.f, self.h
        M, N = m + n + r, 2 * m + 2 * n + r
        A = self.__Construct_A_Matrix()
        A_Mat = Matrix.dense(A)
        b = self.__Construct_b_vector()

        # ---- build Mosek Model
        COModel = Model()

        # -- Decision Variable
        Z = COModel.variable('Z', m, Domain.inRange(0.0, 1.0))
        I = COModel.variable('I', m, Domain.greaterThan(0.0))
        Alpha = COModel.variable('Alpha', M,
                                 Domain.unbounded())  # M by 1 vector
        Beta = COModel.variable('Beta', M, Domain.unbounded())  # M by 1 vector
        Theta = COModel.variable('Theta', N,
                                 Domain.unbounded())  # N by 1 vector
        # M1_matrix related decision variables
        '''
            [tau, xi^T, phi^T
        M1 = xi, eta,   psi^t
             phi, psi,   w  ]
        '''
        # no-need speedup variables
        Psi = COModel.variable('Psi', [N, n], Domain.unbounded())
        Xi = COModel.variable('Xi', n, Domain.unbounded())  # n by 1 vector
        Phi = COModel.variable('Phi', N, Domain.unbounded())  # N by 1 vector
        # has the potential to speedup
        Tau, Eta, W = self.__Declare_SpeedUp_Vars(COModel)

        # M2 matrix decision variables
        '''
            [a, b^T, c^T
        M2 = b, e,   d^t
             c, d,   f  ]
        '''
        a_M2 = COModel.variable('a_M2', 1, Domain.greaterThan(0.0))
        b_M2 = COModel.variable('b_M2', n, Domain.greaterThan(0.0))
        c_M2 = COModel.variable('c_M2', N, Domain.greaterThan(0.0))
        e_M2 = COModel.variable('e_M2', [n, n], Domain.greaterThan(0.0))
        d_M2 = COModel.variable('d_M2', [N, n], Domain.greaterThan(0.0))
        f_M2 = COModel.variable('f_M2', [N, N], Domain.greaterThan(0.0))

        # -- Objective Function
        obj_1 = Expr.dot(f, Z)
        obj_2 = Expr.dot(h, I)
        obj_3 = Expr.dot(b, Alpha)
        obj_4 = Expr.dot(b, Beta)
        obj_5 = Expr.dot([1], Expr.add(Tau, a_M2))
        obj_6 = Expr.dot([2 * mean for mean in mu], Expr.add(Xi, b_M2))
        obj_7 = Expr.dot(sigma, Expr.add(Eta, e_M2))
        COModel.objective(
            ObjectiveSense.Minimize,
            Expr.add([obj_1, obj_2, obj_3, obj_4, obj_5, obj_6, obj_7]))

        # Constraint 1
        _expr = Expr.sub(Expr.mul(A_Mat.transpose(), Alpha), Theta)
        _expr = Expr.sub(_expr, Expr.mul(2, Expr.add(Phi, c_M2)))
        _expr_rhs = Expr.vstack(Expr.constTerm([0.0] * n), Expr.mul(-1, I),
                                Expr.constTerm([0.0] * M))
        COModel.constraint('constr1', Expr.sub(_expr, _expr_rhs),
                           Domain.equalsTo(0.0))
        del _expr, _expr_rhs

        # Constraint 2
        _first_term = Expr.add([
            Expr.mul(Beta.index(row),
                     np.outer(A[row], A[row]).tolist()) for row in range(M)
        ])
        _second_term = Expr.add([
            Expr.mul(Theta.index(k), Matrix.sparse(N, N, [k], [k], [1]))
            for k in range(N)
        ])
        _third_term = Expr.add(W, f_M2)
        _expr = Expr.sub(Expr.add(_first_term, _second_term), _third_term)
        COModel.constraint('constr2', _expr, Domain.equalsTo(0.0))
        del _expr, _first_term, _second_term, _third_term

        # Constraint 3
        _expr = Expr.mul(-2, Expr.add(Psi, d_M2))
        _expr_rhs = Matrix.sparse([[Matrix.eye(n)], [Matrix.sparse(N - n, n)]])
        COModel.constraint('constr3', Expr.sub(_expr, _expr_rhs),
                           Domain.equalsTo(0))
        del _expr, _expr_rhs

        # Constraint 4: I <= M*Z
        COModel.constraint('constr4', Expr.sub(Expr.mul(20000.0, Z), I),
                           Domain.greaterThan(0.0))

        # Constraint 5: M1 is SDP
        COModel.constraint(
            'constr5',
            Expr.vstack(Expr.hstack(Tau, Xi.transpose(), Phi.transpose()),
                        Expr.hstack(Xi, Eta, Psi.transpose()),
                        Expr.hstack(Phi, Psi, W)), Domain.inPSDCone(1 + n + N))

        return COModel