コード例 #1
0
    def _evaluate_graph_in_batches(self):
        """
        Feeds the entire sequence though the MPN in batches. It does so by applying a 'sliding window' over the sequence,
        where windows correspond consecutive pairs of start/end frame locations (e.g. frame 1 to 15, 5 to 20, 10 to 25,
        etc.).
        For every window, a subgraph is created by selecting all detections that fall inside it. Then this graph
        is fed to the message passing network, and predictions are stored.
        Since windows overlap, we end up with several predictions per edge. We simply average them overall all
        windows.
        """
        device = torch.device('cuda')
        all_frames = np.array(self.full_graph.frames)
        frame_num_per_node = torch.from_numpy(
            self.full_graph.graph_df.frame.values).to(device)
        node_names = torch.arange(self.full_graph.graph_obj.x.shape[0])

        # Iterate over overlapping windows of (starg_frame, end_frame)
        overall_edge_preds = torch.zeros(
            self.full_graph.graph_obj.num_edges).to(device)
        overall_num_preds = overall_edge_preds.clone()
        for eval_round, (start_frame, end_frame) in enumerate(
                zip(all_frames,
                    all_frames[self.full_graph.frames_per_graph - 1:])):
            assert ((start_frame <= all_frames) & (all_frames <= end_frame)
                    ).sum() == self.full_graph.frames_per_graph

            # Create and evaluate a a subgraph corresponding to a batch of frames
            nodes_mask = (start_frame <= frame_num_per_node) & (
                frame_num_per_node <= end_frame)
            edges_mask = nodes_mask[self.full_graph.graph_obj.edge_index[
                0]] & nodes_mask[self.full_graph.graph_obj.edge_index[1]]

            subgraph = Graph(
                x=self.full_graph.graph_obj.x[nodes_mask],
                edge_attr=self.full_graph.graph_obj.edge_attr[edges_mask],
                reid_emb_dists=self.full_graph.graph_obj.
                reid_emb_dists[edges_mask],
                edge_index=self.full_graph.graph_obj.edge_index.T[edges_mask].T
                - node_names[nodes_mask][0])

            if hasattr(self.full_graph.graph_obj, 'edge_labels'):
                subgraph.edge_labels = self.full_graph.graph_obj.edge_labels[
                    edges_mask]

            # Predict edge values for the current batch
            edge_preds, pred_mask = self._predict_edges(subgraph=subgraph)

            # Store predictions
            overall_edge_preds[edges_mask] += edge_preds
            assert (overall_num_preds[torch.where(edges_mask)[0][pred_mask]] ==
                    overall_num_preds[edges_mask][pred_mask]).all()
            overall_num_preds[torch.where(edges_mask)[0][pred_mask]] += 1

        # Average edge predictions over all batches, and over each pair of directed edges
        final_edge_preds = overall_edge_preds / overall_num_preds
        final_edge_preds[torch.isnan(final_edge_preds)] = 0
        self.full_graph.graph_obj.edge_preds = final_edge_preds
        to_undirected_graph(self.full_graph,
                            attrs_to_update=('edge_preds', 'edge_labels'))
        to_lightweight_graph(self.full_graph)
コード例 #2
0
    def _evaluate_graph_in_batches(self, subseq_graph, frames_per_graph):
        """
        Feeds the entire sequence though the MPN in batches. It does so by applying a 'sliding window' over the sequence,
        where windows correspond consecutive pairs of start/end frame locations (e.g. frame 1 to 15, 5 to 20, 10 to 25,
        etc.).
        For every window, a subgraph is created by selecting all detections that fall inside it. Then this graph
        is fed to the message passing network, and predictions are stored.
        Since windows overlap, we end up with several predictions per edge. We simply average them overall all
        windows.
        """
        device = torch.device("cuda")
        all_frames = np.array(subseq_graph.frames)
        frame_num_per_node = torch.from_numpy(
            subseq_graph.graph_df.frame.values).to(device)
        node_names = torch.arange(subseq_graph.graph_obj.x.shape[0])

        # Iterate over overlapping windows of (starg_frame, end_frame)
        overall_edge_preds = torch.zeros(
            subseq_graph.graph_obj.num_edges).to(device)
        overall_num_preds = overall_edge_preds.clone()
        for eval_round, (start_frame, end_frame) in enumerate(
                zip(all_frames, all_frames[frames_per_graph - 1:])):
            assert ((start_frame <= all_frames) &
                    (all_frames <= end_frame)).sum() == frames_per_graph

            # Create and evaluate a a subgraph corresponding to a batch of frames
            nodes_mask = (start_frame <= frame_num_per_node) & (
                frame_num_per_node <= end_frame)
            edges_mask = (nodes_mask[subseq_graph.graph_obj.edge_index[0]]
                          & nodes_mask[subseq_graph.graph_obj.edge_index[1]])

            subraph = None
            if self.dataset_params["combined_graph"]:
                joints_per_bb = (subseq_graph.graph_obj.x_joint.shape[0] //
                                 subseq_graph.graph_obj.x.shape[0])

                if joints_per_bb != 17:
                    print("OH no!")

                node_types = self.graph_model.node_types
                edge_attrs = {}
                edge_indices = {}
                xs = {}

                joint_mask = (nodes_mask.reshape((-1, 1)).repeat(
                    (1, joints_per_bb)).reshape((-1)))

                xs["bb"] = subseq_graph.graph_obj.x[nodes_mask]
                edge_attrs["bb-bb"] = subseq_graph.graph_obj.edge_attr[
                    edges_mask]
                edge_indices["bb-bb"] = (
                    subseq_graph.graph_obj.edge_index.T[edges_mask].T -
                    node_names[nodes_mask][0])

                joint_names = torch.arange(
                    subseq_graph.graph_obj.x_joint.shape[0])

                xs["joint"] = subseq_graph.graph_obj.x_joint[joint_mask]

                if (joint_mask.shape[0] !=
                        subseq_graph.graph_obj["edge_index_bb-joint"].shape[1]
                    ):
                    print("Oh no")

                edge_indices["bb-joint"] = subseq_graph.graph_obj[
                    "edge_index_bb-joint"][:, joint_mask]
                edge_indices["bb-joint"][0] = (edge_indices["bb-joint"][0] -
                                               node_names[nodes_mask][0])
                edge_indices["bb-joint"][1] = (edge_indices["bb-joint"][1] -
                                               joint_names[joint_mask][0])

                edge_attrs["bb-joint"] = subseq_graph.graph_obj[
                    "edge_attr_bb-joint"][joint_mask]

                joint_edge_mask = (edges_mask.reshape((-1, 1)).repeat(
                    (1, joints_per_bb)).reshape((-1)))

                if (joint_edge_mask.shape[0] != subseq_graph.
                        graph_obj["edge_index_joint-joint"].shape[1]):
                    print("Oh no")

                edge_indices["joint-joint"] = (
                    subseq_graph.graph_obj["edge_index_joint-joint"]
                    [:, joint_edge_mask] - joint_names[joint_mask][0])
                edge_attrs["joint-joint"] = subseq_graph.graph_obj[
                    "edge_attr_joint-joint"][joint_edge_mask]

                subgraph = MultiGraph(
                    node_types=node_types,
                    edge_attrs=edge_attrs,
                    edge_indices=edge_indices,
                    xs=xs,
                    x=subseq_graph.graph_obj.x[nodes_mask],
                    edge_attr=subseq_graph.graph_obj.edge_attr[edges_mask],
                    reid_emb_dists=subseq_graph.graph_obj.
                    reid_emb_dists[edges_mask],
                    edge_index=subseq_graph.graph_obj.edge_index.T[edges_mask].
                    T - node_names[nodes_mask][0],
                )
            else:
                subgraph = Graph(
                    x=subseq_graph.graph_obj.x[nodes_mask],
                    edge_attr=subseq_graph.graph_obj.edge_attr[edges_mask],
                    reid_emb_dists=subseq_graph.graph_obj.
                    reid_emb_dists[edges_mask],
                    edge_index=subseq_graph.graph_obj.edge_index.T[edges_mask].
                    T - node_names[nodes_mask][0],
                )

            if hasattr(subseq_graph.graph_obj, "edge_labels"):
                subgraph.edge_labels = subseq_graph.graph_obj.edge_labels[
                    edges_mask]

            # Predict edge values for the current batch
            edge_preds, pred_mask = self._predict_edges(subgraph=subgraph)

            # Store predictions
            overall_edge_preds[edges_mask] += edge_preds
            assert (overall_num_preds[torch.where(edges_mask)[0][pred_mask]] ==
                    overall_num_preds[edges_mask][pred_mask]).all()
            overall_num_preds[torch.where(edges_mask)[0][pred_mask]] += 1

        # Average edge predictions over all batches, and over each pair of directed edges
        final_edge_preds = overall_edge_preds / overall_num_preds
        final_edge_preds[torch.isnan(final_edge_preds)] = 0
        subseq_graph.graph_obj.edge_preds = final_edge_preds
        to_undirected_graph(subseq_graph,
                            attrs_to_update=("edge_preds", "edge_labels"))
        to_lightweight_graph(subseq_graph)
        return subseq_graph