def sarsa_lambda_mc(lr, l, baseparams, eps, epoch=100, base='fourier'): mc = MountainCar() estimated_rewards = np.zeros(epoch) actions = mc.actions w = None if base == 'fourier': order = baseparams['order'] s = mc.d_zero() w = np.zeros((1, len(actions) * (order + 1) ** len(s))) elif base == 'tile': num_tilings, tiles_per_tiling = baseparams['num_tilings'], baseparams['tiles_per_tiling'] s = mc.d_zero() w = np.zeros((1, len(actions) * num_tilings)) for x in range(epoch): s = mc.d_zero() # e ← 0 e = np.zeros(w.shape) # choose a from s using a policy derived from q (e.g., ε-greedy or softmax); first_q = estimation.epsilon_greedy(fa.qw(w, s, actions, base, baseparams), actions, eps(x)) # pi_s = pe.epsilon_greedy(pe.qw(w, s, order, actions, base), actions, eps) a = np.random.choice(actions, 1, p=first_q)[0] count = 0 while s[0] < mc.right_bound and count < 1e3: # Take action a and observe r and s′; new_s, r = mc.P_and_R(s, a) # Choose a′ from s′ using a policy derived from q; pi_temp = estimation.epsilon_greedy(fa.qw(w, new_s, actions, base, baseparams), actions, eps(x)) new_a = np.random.choice(actions, 1, p=pi_temp)[0] if new_s == [0.5, 0]: new_q = 0 else: new_q = fa.qw_ele(w, new_s, new_a, actions, base, baseparams)[0] q, dqdw = fa.qw_ele(w, s, a, actions, base, baseparams) # e←γλe+∂qw(s,a)/∂w; e = l * 1 * e + dqdw # δ←r+γqw(s′,a′)−qw(s,a); delta = r + 1 * new_q - q # w←w+αδe; w += lr * delta * e # print(w) s = new_s a = new_a count += 1 # print('update end') epi = MountainCarEpisode(mc) estimated_rewards[x] = epi.run_with_w(w, eps(x), base, baseparams) print('episode: ', x, ', reward: ', estimated_rewards[x]) return estimated_rewards
def sarsa_mountaincar(lr, baseparams, eps, epoch=100, base='fourier'): mc = MountainCar() estimated_rewards = np.zeros(epoch) actions = mc.actions w = None if base == 'fourier': order = baseparams['order'] s = mc.d_zero() w = np.zeros((1, len(actions) * (order + 1)**len(s))) elif base == 'tile': num_tilings, tiles_per_tiling = baseparams['num_tilings'], baseparams[ 'tiles_per_tiling'] s = mc.d_zero() w = np.zeros((1, len(actions) * num_tilings)) for x in range(epoch): s = mc.d_zero() # choose a from s using a policy derived from q (e.g., ε-greedy or softmax); first_q = estimation.epsilon_greedy( fa.qw(w, s, actions, base, baseparams), actions, eps(x)) # pi_s = pe.epsilon_greedy(pe.qw(w, s, order, actions, base), actions, eps) a = np.random.choice(actions, 1, p=first_q)[0] count = 0 while s[0] < mc.right_bound: # Take action a and observe r and s′; new_s, r = mc.P_and_R(s, a) # Choose a′ from s′ using a policy derived from q; pi_temp = estimation.epsilon_greedy( fa.qw(w, new_s, actions, base, baseparams), actions, eps(x)) new_a = np.random.choice(actions, 1, p=pi_temp)[0] # w += lr * (r + pe.qw_fourier_ele(w, new_s, new_a, order, actions) - # pe.qw_fourier_ele(w, s, a, order, actions)) * pe.dqwdw_fourier(s, a, order, actions) new_q = fa.qw_ele(w, new_s, new_a, actions, base, baseparams)[0] q, dqdw = fa.qw_ele(w, s, a, actions, base, baseparams) w += lr * (r + new_q - q) * dqdw s = new_s a = new_a count += 1 epi = MountainCarEpisode(mc) estimated_rewards[x] = epi.run_with_w(w, eps(x), base, baseparams) print('episode: ', x, ', reward: ', estimated_rewards[x]) return estimated_rewards
def reinforce_mc(alpha, beta, l, baseparams, eps, epoch=100, base='fourier'): mc = MountainCar() estimated_rewards = np.zeros(epoch) actions = mc.actions theta = None order = 0 if base == 'fourier': order = baseparams['order'] s = mc.d_zero() theta = np.zeros((1, len(actions) * (order + 1)**len(s))) w = np.zeros((1, (order + 1)**len(s))) # theta = np.zeros((len(s), 3)) for x in range(epoch): s = mc.d_zero() e = np.zeros(w.shape) hist_s = [] hist_a = [] hist_r = [] hist_pi = [] count = 0 dj = np.zeros(theta.shape) # for each time step, until s is the terminal absorbing state do while s[0] < mc.right_bound and count < 1000: pi_temp = estimation.softmax( fa.qw(theta, s, actions, base, baseparams), eps(x)) a = np.random.choice(actions, 1, p=pi_temp)[0] new_s, r = mc.P_and_R(s, a) hist_a.append(a) hist_s.append(s) hist_r.append(r) hist_pi.append(pi_temp) s = new_s count += 1 for i in range(len(hist_a)): g = 0 for j in range(i, len(hist_s)): g += hist_r[j] v, dv = fa.vw(w, hist_s[i], base, baseparams) dj += (g - v) * dsoftmax(hist_s[i], hist_a[i], order, actions, hist_pi[i]) e = l * e + dv if i == len(hist_s) - 1: delta = hist_r[i] + 0 - \ fa.vw(w, hist_s[i], base, baseparams)[0] else: delta = hist_r[i] + fa.vw(w, hist_s[i + 1], base, baseparams)[0] - \ fa.vw(w, hist_s[i], base, baseparams)[0] w += alpha * delta * e theta += beta * dj epi = MountainCarEpisode(mc) # print(theta) estimated_rewards[x] = epi.run_with_w_softmax(theta, eps(x), base, baseparams) print('episode: ', x, ', reward: ', estimated_rewards[x]) return estimated_rewards
def actor_critic_mc(lr, l, baseparams, eps, epoch=100, base='fourier'): mc = MountainCar() estimated_rewards = np.zeros(epoch) actions = mc.actions w = None theta = None order = 0 if base == 'fourier': order = baseparams['order'] s = mc.d_zero() w = np.zeros((1, (order + 1)**len(s))) theta = np.zeros((1, len(actions) * (order + 1)**len(s))) # theta = np.zeros((len(s), 3)) for x in range(epoch): s = mc.d_zero() # ev ← 0 e = np.zeros(w.shape) # et ← 0 # et = np.zeros(theta.shape) count = 0 # for each time step, until s is the terminal absorbing state do while s[0] < mc.right_bound and count < 1000: pi_temp = estimation.softmax( fa.qw(theta, s, actions, base, baseparams), eps(x)) a = np.random.choice(actions, 1, p=pi_temp)[0] # print(a) # print(pi_temp) # dydtheta_list = [] # for na in actions: # dydtheta_list.append(fa.qw_ele(theta, s, na, actions, base, baseparams)[1]) # # dtheta = estimation.dsoftmax(fa.qw(theta, s, actions, base, baseparams), dydtheta_list, actions.index( # a), eps(x)) dtheta = np.zeros((1, len(actions) * (order + 1)**len(s))) for idx in range(len(actions)): phi = fa.fourier_phi_mc(s, order).T if actions[idx] == a: # print('target') dtheta[:, idx * phi.shape[1]:(idx + 1) * phi.shape[1]] = (1 - pi_temp[idx]) * phi else: dtheta[:, idx * phi.shape[1]:(idx + 1) * phi.shape[1]] = -pi_temp[idx] * phi # Take action a and observe r and s′; new_s, r = mc.P_and_R(s, a) # Critic update using TD(λ) # ev←γλev+∂vw(s); v, dv = fa.vw(w, s, base, baseparams) if new_s[0] > mc.right_bound: new_v = 0 else: new_v = fa.vw(w, new_s, base, baseparams)[0] e = l * mc.gamma * e e += dv # δ ← r + γvw(s′,a′) − vw(s,a); delta = r + mc.gamma * new_v - v # w←w+αδev; w += lr * delta * e # Actor update # θ + αγ^tδ ∂ ln(π(s,a,θ)) theta += lr * delta * dtheta s = new_s count += 1 epi = MountainCarEpisode(mc) # print(theta) estimated_rewards[x] = epi.run_with_w_softmax(theta, eps(x), base, baseparams) print('episode: ', x, ', reward: ', estimated_rewards[x]) return estimated_rewards