コード例 #1
0
    def __init__(self, input_shape, output_dim):
        '''
        FIELDS:
            self.params: any params from the layer that needs to be updated
                         by backpropagation can be put inside self.params
        PARAMS:
            input_shape: tuple
                         shape of the input image with format (channel, height, width)
            output_dim: int
                        the output dimension of the model
        '''
        assert len(input_shape) == 3, 'input_shape must be a tuple or list of dim (channel, height, width)'
        c, h, w = input_shape

        valid = lambda x, y, kernel, stride : ((x-kernel)/stride + 1, (y-kernel)/stride + 1)
        full = lambda x, y, kernel, stride : ((x+kernel)/stride - 1, (y+kernel)/stride - 1)

        self.layers = []
        self.layers.append(Convolution2D(input_channels=3, filters=96, kernel_size=(11,11),
                                         stride=(4,4), border_mode='valid'))
        nh, nw = valid(h, w, 11, 4)
        self.layers.append(RELU())
        self.layers.append(LRN())
        self.layers.append(Pooling2D(poolsize=(3,3), stride=(2,2), mode='max'))
        nh, nw = valid(nh, nw, 3, 2)
        self.layers.append(Convolution2D(input_channels=96, filters=256, kernel_size=(5,5),
                                         stride=(1,1), border_mode='full'))
        nh, nw = full(nh, nw, 5, 1)
        self.layers.append(RELU())
        self.layers.append(LRN())
        self.layers.append(Pooling2D(poolsize=(3,3), stride=(2,2), mode='max'))
        nh, nw = valid(nh, nw, 3, 2)
        self.layers.append(Convolution2D(input_channels=256, filters=384, kernel_size=(3,3),
                                         stride=(1,1), border_mode='full'))
        nh, nw = full(nh, nw, 3, 1)
        self.layers.append(RELU())
        self.layers.append(Convolution2D(input_channels=384, filters=384, kernel_size=(3,3),
                                         stride=(1,1), border_mode='full'))
        nh, nw = full(nh, nw, 3, 1)
        self.layers.append(RELU())
        self.layers.append(Convolution2D(input_channels=384, filters=256, kernel_size=(3,3),
                                         stride=(1,1), border_mode='full'))
        nh, nw = full(nh, nw, 3, 1)
        self.layers.append(RELU())
        self.layers.append(Pooling2D(poolsize=(3,3), stride=(2,2), mode='max'))
        nh, nw = valid(nh, nw, 3, 2)

        self.layers.append(Flatten())
        self.layers.append(Linear(256*nh*nw,4096))
        self.layers.append(RELU())
        self.layers.append(Dropout(0.5))
        self.layers.append(Linear(4096,4096))
        self.layers.append(RELU())
        self.layers.append(Dropout(0.5))
        self.layers.append(Linear(4096,output_dim))
        self.layers.append(Softmax())

        self.params = []
        for layer in self.layers:
            self.params += layer.params
コード例 #2
0
def _right_model(img_input_dim, merged_dim):
    c, h, w = img_input_dim

    valid = lambda x, y, kernel, stride : ((x-kernel)/stride + 1, (y-kernel)/stride + 1)
    full = lambda x, y, kernel, stride : ((x+kernel)/stride - 1, (y+kernel)/stride - 1)

    right_model = Sequential(input_var=T.tensor4(), output_var=T.matrix())
    right_model.add(Convolution2D(input_channels=3, filters=8, kernel_size=(3,3), stride=(1,1), border_mode='full'))
    h, w = full(h, w, 3, 1)
    right_model.add(RELU())
    right_model.add(Convolution2D(input_channels=8, filters=8, kernel_size=(3,3), stride=(1,1), border_mode='valid'))
    h, w = valid(h, w, 3, 1)
    right_model.add(RELU())
    right_model.add(Pooling2D(poolsize=(2, 2), stride=(1,1), mode='max'))
    h, w = valid(h, w, 2, 1)
    right_model.add(Dropout(0.25))

    right_model.add(Convolution2D(input_channels=8, filters=8, kernel_size=(3,3), stride=(1,1), border_mode='full'))
    h, w = full(h, w, 3, 1)
    right_model.add(RELU())
    right_model.add(Convolution2D(input_channels=8, filters=8, kernel_size=(3,3), stride=(1,1), border_mode='valid'))
    h, w = valid(h, w, 3, 1)
    right_model.add(RELU())
    right_model.add(Pooling2D(poolsize=(2, 2), stride=(1,1), mode='max'))
    h, w = valid(h, w, 2, 1)
    right_model.add(Dropout(0.25))

    right_model.add(Flatten())
    right_model.add(Linear(8*h*w, 512))
    right_model.add(Linear(512, 512))
    right_model.add(RELU())
    right_model.add(Dropout(0.5))

    right_model.add(Linear(512, merged_dim))
    return right_model
コード例 #3
0
ファイル: cifar10_cnn.py プロジェクト: dksahuji/Mozi
def train():

    data = Cifar10(batch_size=32, train_valid_test_ratio=[4,1,1])

    model = Sequential(input_var=T.tensor4(), output_var=T.matrix())
    model.add(Convolution2D(input_channels=3, filters=32, kernel_size=(3,3), stride=(1,1), border_mode='full'))
    model.add(RELU())
    model.add(Convolution2D(input_channels=32, filters=32, kernel_size=(3,3), stride=(1,1)))
    model.add(RELU())
    model.add(Pooling2D(poolsize=(2, 2), mode='max'))
    model.add(Dropout(0.25))

    model.add(Convolution2D(input_channels=32, filters=64, kernel_size=(3,3), stride=(1,1), border_mode='full'))
    model.add(RELU())
    model.add(Convolution2D(input_channels=64, filters=64, kernel_size=(3,3), stride=(1,1)))
    model.add(RELU())
    model.add(Pooling2D(poolsize=(2, 2), mode='max'))
    model.add(Dropout(0.25))

    model.add(Flatten())
    model.add(Linear(64*8*8, 512))
    model.add(RELU())
    model.add(Dropout(0.5))

    model.add(Linear(512, 10))
    model.add(Softmax())

    # build learning method
    learning_method = SGD(learning_rate=0.01, momentum=0.9,
                          lr_decay_factor=0.9, decay_batch=5000)

    # put everything into the train object
    train_object = TrainObject(model = model,
                               log = None,
                               dataset = data,
                               train_cost = entropy,
                               valid_cost = error,
                               learning_method = learning_method,
                               stop_criteria = {'max_epoch' : 10,
                                                'epoch_look_back' : 5,
                                                'percent_decrease' : 0.01}
                               )
    # finally run the code
    train_object.setup()
    train_object.run()

    # test the model on test set
    ypred = model.fprop(data.get_test().X)
    ypred = np.argmax(ypred, axis=1)
    y = np.argmax(data.get_test().y, axis=1)
    accuracy = np.equal(ypred, y).astype('f4').sum() / len(y)
    print 'test accuracy:', accuracy
コード例 #4
0
def train():

    # build dataset
    batch_size = 64
    data = Mnist(batch_size=batch_size, train_valid_test_ratio=[5, 1, 1])

    # build model
    model = Sequential(input_var=T.matrix(), output_var=T.matrix())
    model.add(Linear(prev_dim=28 * 28, this_dim=200))
    model.add(RELU())
    model.add(Linear(prev_dim=200, this_dim=100))
    model.add(RELU())
    model.add(Dropout(0.5))
    model.add(Linear(prev_dim=100, this_dim=10))
    model.add(Softmax())

    # build learning method
    decay_batch = int(data.train.X.shape[0] * 2 / batch_size)
    learning_method = SGD(learning_rate=0.1,
                          momentum=0.9,
                          lr_decay_factor=0.9,
                          decay_batch=decay_batch)

    # Build Logger
    log = Log(
        experiment_name='MLP',
        description='This is a tutorial',
        save_outputs=True,  # log all the outputs from the screen
        save_model=True,  # save the best model
        save_epoch_error=True,  # log error at every epoch
        save_to_database={
            'name': 'Example.sqlite3',
            'records': {
                'Batch_Size': batch_size,
                'Learning_Rate': learning_method.learning_rate,
                'Momentum': learning_method.momentum
            }
        })  # end log

    # put everything into the train object
    train_object = TrainObject(model=model,
                               log=log,
                               dataset=data,
                               train_cost=mse,
                               valid_cost=error,
                               learning_method=learning_method,
                               stop_criteria={
                                   'max_epoch': 100,
                                   'epoch_look_back': 5,
                                   'percent_decrease': 0.01
                               })
    # finally run the code
    train_object.setup()
    train_object.run()

    ypred = model.fprop(data.get_test().X)
    ypred = np.argmax(ypred, axis=1)
    y = np.argmax(data.get_test().y, axis=1)
    accuracy = np.equal(ypred, y).astype('f4').sum() / len(y)
    print('test accuracy:', accuracy)
コード例 #5
0
def train():
    # create a fake dataset
    X1 = np.random.rand(100000, 1000)
    y1 = np.random.rand(100000, 10)
    with open('X1.npy', 'wb') as xin, open('y1.npy', 'wb') as yin:
        np.save(xin, X1)
        np.save(yin, y1)

    X2 = np.random.rand(100000, 1000)
    y2 = np.random.rand(100000, 10)
    with open('X2.npy', 'wb') as xin, open('y2.npy', 'wb') as yin:
        np.save(xin, X2)
        np.save(yin, y2)

    X3 = np.random.rand(100000, 1000)
    y3 = np.random.rand(100000, 10)
    with open('X3.npy', 'wb') as xin, open('y3.npy', 'wb') as yin:
        np.save(xin, X3)
        np.save(yin, y3)

    # now we can create the data by putting the paths
    # ('X1.npy', 'y1.npy') and ('X2.npy', 'y2.npy') into DataBlocks
    data = DataBlocks(data_paths=[('X1.npy', 'y1.npy'), ('X2.npy', 'y2.npy'), ('X3.npy', 'y3.npy')],
                      batch_size=100, train_valid_test_ratio=[3,2,0], allow_preload=False)


    model = Sequential(input_var=T.matrix(), output_var=T.matrix())
    model.add(Linear(prev_dim=1000, this_dim=200))
    model.add(RELU())
    model.add(Linear(prev_dim=200, this_dim=100))
    model.add(RELU())
    model.add(Dropout(0.5))
    model.add(Linear(prev_dim=100, this_dim=10))
    model.add(Softmax())

    # build learning method
    learning_method = SGD(learning_rate=0.01, momentum=0.9,
                          lr_decay_factor=0.9, decay_batch=5000)

    # put everything into the train object
    train_object = TrainObject(model = model,
                               log = None,
                               dataset = data,
                               train_cost = entropy,
                               valid_cost = error,
                               learning_method = learning_method,
                               stop_criteria = {'max_epoch' : 10,
                                                'epoch_look_back' : 5,
                                                'percent_decrease' : 0.01}
                               )
    # finally run the code
    train_object.setup()
    train_object.run()

    for X_path, y_path in [('X1.npy', 'y1.npy'), ('X2.npy', 'y2.npy')]:
        with open(X_path) as Xin, open(y_path) as yin:
            # test the model on test set
            ypred = model.fprop(np.load(Xin))
            ypred = np.argmax(ypred, axis=1)
            y = np.argmax(np.load(yin), axis=1)
            accuracy = np.equal(ypred, y).astype('f4').sum() / len(y)
            print('combined accuracy for blk %s:'%X_path, accuracy)
コード例 #6
0
ファイル: imdb_bilstm.py プロジェクト: Python3pkg/Mozi
def train():
    max_features=20000
    maxseqlen = 100 # cut texts after this number of words (among top max_features most common words)
    batch_size = 16
    word_vec_len = 256
    iter_class = 'SequentialRecurrentIterator'
    seq_len = 10

    data = IMDB(pad_zero=True, maxlen=100, nb_words=max_features, batch_size=batch_size,
                train_valid_test_ratio=[8,2,0], iter_class=iter_class, seq_len=seq_len)

    print('Build model...')
    model = Sequential(input_var=T.matrix(), output_var=T.matrix())
    model.add(Embedding(max_features, word_vec_len))

    # MLP layers
    model.add(Transform((word_vec_len,))) # transform from 3d dimensional input to 2d input for mlp
    model.add(Linear(word_vec_len, 100))
    model.add(RELU())
    model.add(BatchNormalization(dim=100, layer_type='fc'))
    model.add(Linear(100,100))
    model.add(RELU())
    model.add(BatchNormalization(dim=100, layer_type='fc'))
    model.add(Linear(100, word_vec_len))
    model.add(RELU())
    model.add(Transform((maxseqlen, word_vec_len))) # transform back from 2d to 3d for recurrent input

    # Stacked up BiLSTM layers
    model.add(BiLSTM(word_vec_len, 50, output_mode='concat', return_sequences=True))
    model.add(BiLSTM(100, 24, output_mode='sum', return_sequences=True))
    model.add(LSTM(24, 24, return_sequences=True))

    # MLP layers
    model.add(Reshape((24 * maxseqlen,)))
    model.add(BatchNormalization(dim=24 * maxseqlen, layer_type='fc'))
    model.add(Linear(24 * maxseqlen, 50))
    model.add(RELU())
    model.add(Dropout(0.2))
    model.add(Linear(50, 1))
    model.add(Sigmoid())

    # build learning method
    decay_batch = int(data.train.X.shape[0] * 5 / batch_size)
    learning_method = SGD(learning_rate=0.1, momentum=0.9,
                          lr_decay_factor=1.0, decay_batch=decay_batch)

    # Build Logger
    log = Log(experiment_name = 'MLP',
              description = 'This is a tutorial',
              save_outputs = True, # log all the outputs from the screen
              save_model = True, # save the best model
              save_epoch_error = True, # log error at every epoch
              save_to_database = {'name': 'Example.sqlite3',
                                  'records': {'Batch_Size': batch_size,
                                              'Learning_Rate': learning_method.learning_rate,
                                              'Momentum': learning_method.momentum}}
             ) # end log

    # put everything into the train object
    train_object = TrainObject(model = model,
                               log = log,
                               dataset = data,
                               train_cost = mse,
                               valid_cost = error,
                               learning_method = learning_method,
                               stop_criteria = {'max_epoch' : 100,
                                                'epoch_look_back' : 5,
                                                'percent_decrease' : 0.01}
                               )
    # finally run the code
    train_object.setup()
    train_object.run()
コード例 #7
0
def train():

    data = Cifar10(batch_size=32, train_valid_test_ratio=[4, 1, 1])

    model = Sequential(input_var=T.tensor4(), output_var=T.matrix())
    model.add(
        Convolution2D(input_channels=3,
                      filters=8,
                      kernel_size=(3, 3),
                      stride=(1, 1),
                      border_mode='full'))
    model.add(RELU())
    model.add(
        Convolution2D(input_channels=8,
                      filters=16,
                      kernel_size=(3, 3),
                      stride=(1, 1)))
    model.add(RELU())
    model.add(Pooling2D(poolsize=(4, 4), stride=(4, 4), mode='max'))
    model.add(Dropout(0.25))

    model.add(Flatten())
    model.add(Linear(16 * 8 * 8, 512))
    model.add(RELU())
    model.add(Dropout(0.5))

    model.add(Linear(512, 10))
    model.add(Softmax())

    # build learning method
    learning_method = SGD(learning_rate=0.01,
                          momentum=0.9,
                          lr_decay_factor=0.9,
                          decay_batch=5000)

    # Build Logger
    log = Log(
        experiment_name='cifar10_cnn',
        description='This is a tutorial',
        save_outputs=True,  # log all the outputs from the screen
        save_model=True,  # save the best model
        save_epoch_error=True,  # log error at every epoch
        save_to_database={
            'name': 'hyperparam.sqlite3',
            'records': {
                'Batch_Size': data.batch_size,
                'Learning_Rate': learning_method.learning_rate,
                'Momentum': learning_method.momentum
            }
        })  # end log

    # put everything into the train object
    train_object = TrainObject(model=model,
                               log=log,
                               dataset=data,
                               train_cost=entropy,
                               valid_cost=error,
                               learning_method=learning_method,
                               stop_criteria={
                                   'max_epoch': 30,
                                   'epoch_look_back': 5,
                                   'percent_decrease': 0.01
                               })
    # finally run the code
    train_object.setup()
    train_object.run()

    # test the model on test set
    ypred = model.fprop(data.get_test().X)
    ypred = np.argmax(ypred, axis=1)
    y = np.argmax(data.get_test().y, axis=1)
    accuracy = np.equal(ypred, y).astype('f4').sum() / len(y)
    print 'test accuracy:', accuracy