コード例 #1
0
ファイル: Models.py プロジェクト: jbkinney/mpathic
    def evaluate(self,seqs):
        # Check seqs container
        if isinstance(seqs,pd.DataFrame):
            seq_col = qc.get_cols_from_df(seqs,'seqs')[0]
            seqs_to_use = list(seqs[seq_col])
        elif not (isinstance(seqs,list) or isinstance(seqs,pd.Series)):
            raise SortSeqError('Sequences must be input as a list, pd.Series, or pd.DataFrame')
        else:
            seqs_to_use = list(seqs)

        # Check length
        if len(seqs_to_use[0]) != self.length:
            raise SortSeqError(\
                'Energy Matrix Length does not equal Sequence Length')

        # Compute seqmats
        t0 = time.time()
        seqarray = fast.seqs2array_for_matmodel(list(seqs_to_use),self.seqtype)
        t1 = time.time()

        # Compute and return values
        vals = self.evaluate_on_seqarray(seqarray)
        t2 = time.time()

        #print 't1-t0 = %.4f, t1-t2 = %.4f'%(t1-t0,t2-t1)
        return vals 
コード例 #2
0
ファイル: numerics.py プロジェクト: jbkinney/mpathic
def dataset2mutarray(dataset_df, modeltype, chunksize=1000, rowsforwtcalc=100):

    # Determine the type of model and set seq2array function appropriately
    if modeltype=='MAT':
        seqs2array = mpathic.fast.seqs2array_for_matmodel
    elif modeltype=='NBR':
        seqs2array = mpathic.fast.seqs2array_for_nbrmodel
    else:
        raise SortSeqError('Unknown model type: %s'%modeltype)

    # Determine seqtype, etc.
    seqcol = qc.get_cols_from_df(dataset_df,'seqs')[0]
    seqtype = qc.colname_to_seqtype_dict[seqcol]
    wtcol = qc.seqtype_to_wtcolname_dict[seqtype]

    # Compute the wt sequence
    rowsforwtcalc = min(rowsforwtcalc,dataset_df.shape[0])
    dataset_head_df = dataset_df.head(rowsforwtcalc)
    mut_df = profile_mut(dataset_head_df)
    wtseq = ''.join(list(mut_df[wtcol]))
    wtrow = seqs2array([wtseq], seq_type=seqtype).ravel().astype(bool)
    numfeatures = len(wtrow)

    # Process dataframe in chunks
    startrow = 0
    endrow = startrow+chunksize-1
    numrows = dataset_df.shape[0]

    # Fill in mutarray (a lil matrix) chunk by chunk
    mutarray_lil = lil_matrix((numrows,numfeatures),dtype=int)
    matrix_filled = False
    while not matrix_filled:

        if startrow >= numrows:
            matrix_filled = True
            continue
        elif endrow >= numrows:
            endrow = numrows-1
            matrix_filled = True

        # Compute seqarray
        seqlist = list(dataset_df[seqcol][startrow:(endrow+1)])
        seqarray = seqs2array(seqlist, seq_type=seqtype)

        # Remove wt entries
        tmp = seqarray.copy()
        tmp[:,wtrow] = 0

        # Store results from this chunk
        mutarray_lil[startrow:(endrow+1),:] = tmp

        # Increment rows
        startrow = endrow+1
        endrow = startrow + chunksize - 1

    # Convert to csr matrix
    mutarray_csr = mutarray_lil.tocsr()

    # Return vararray as well as binary representation of wt seq
    return mutarray_csr, wtrow
コード例 #3
0
ファイル: preprocess.py プロジェクト: jbkinney/mpathic
def main(filelist_df,tags_df=None,indir='./',seq_type=None):
    """ Merges datasets listed in the filelist_df dataframe
    """

    # Validate filelist
    qc.validate_filelist(filelist_df)

    # Read datasets into dictionary indexed by bin number
    dataset_df_dict = {}
    for item in filelist_df.iterrows():
        # Autodetect fasta, fastq, or text file based on file extension
        fn = indir+item[1]['file']
        b = item[1]['bin']
        if re.search(fasta_filename_patterns,fn):
            df = io.load_dataset(fn,file_type='fasta',seq_type=seq_type)
        elif re.search(fastq_filename_patterns,fn):
            df = io.load_dataset(fn,file_type='fastq',seq_type=seq_type)
        else:
            df = io.load_dataset(fn,file_type='text',seq_type=seq_type)
        dataset_df_dict[b] = df

    # Merge datasets into one
    out_df = merge_datasets(dataset_df_dict)

    # Add seqs if given tags_df
    if not tags_df is None:
        qc.validate_tagkey(tags_df)
        tag_col = 'tag'

        # Test to make sure all tags in dataset are a subset of tags
        data_tags = set(out_df[tag_col])
        all_tags = set(tags_df[tag_col])
        if not (data_tags <= all_tags):
            sys.stderr.write('Some tags probably could not be identified.')

        # Get name of seq column       
        seq_cols = qc.get_cols_from_df(tags_df, 'seqs')
        if not len(seq_cols)==1:
            raise SortSeqError('Multiple seq columns; exaclty 1 required.')
        seq_col = seq_cols[0]

        # Set tag to be index column of dataframe
        tags_df = tags_df.set_index(tag_col)

        # Add seqs corresponding to each tag
        tags = out_df[tag_col]
        seqs = tags_df[seq_col][tags].values
        if not all([type(x)==str for x in seqs]):
            raise SortSeqError('Some looked-up seqs are not strings.')
        out_df[seq_col] = tags_df[seq_col][tags].values

    qc.validate_dataset(out_df)
    return out_df
コード例 #4
0
ファイル: predictiveinfo.py プロジェクト: jbkinney/mpathic
def main(
        data_df,model_df,
        start=0,end=None,err=False,coarse_graining_level=0):
    dicttype, modeltype = qc.get_model_type(model_df)
    seq_cols = qc.get_cols_from_df(data_df,'seqs')
    if not len(seq_cols)==1:
        raise SortSeqError('Dataframe has multiple seq cols: %s'%str(seq_cols))
    seq_dict,inv_dict = utils.choose_dict(dicttype,modeltype=modeltype)
    #set name of sequences column based on type of sequence
    type_name_dict = {'dna':'seq','rna':'seq_rna','protein':'seq_pro'}
    seq_col_name = type_name_dict[dicttype]
    #Cut the sequences based on start and end, and then check if it makes sense
    if (start != 0 or end):
        data_df.loc[:,seq_col_name] = data_df.loc[:,seq_col_name].str.slice(start,end)
        if modeltype=='MAT':
            if len(data_df.loc[0,seq_col_name]) != len(model_df.loc[:,'pos']):
                raise SortSeqError('model length does not match dataset length')
        elif modeltype=='NBR':
            if len(data_df.loc[0,seq_col_name]) != len(model_df.loc[:,'pos'])+1:
                raise SortSeqError('model length does not match dataset length')
    col_headers = utils.get_column_headers(data_df)
    if 'ct' not in data_df.columns:
                data_df['ct'] = data_df[col_headers].sum(axis=1)
    data_df = data_df[data_df.ct != 0]        
    if not end:
        seqL = len(data_df[seq_col_name][0]) - start
    else:
        seqL = end-start
    data_df = data_df[data_df[seq_col_name].apply(len) == (seqL)] 
    #make a numpy array out of the model data frame
    model_df_headers = ['val_' + str(inv_dict[i]) for i in range(len(seq_dict))]
    value = np.transpose(np.array(model_df[model_df_headers]))  
    #now we evaluate the expression of each sequence according to the model.
    seq_mat,wtrow = numerics.dataset2mutarray(data_df.copy(),modeltype)
    temp_df = data_df.copy()
    temp_df['val'] = numerics.eval_modelmatrix_on_mutarray(np.array(model_df[model_df_headers]),seq_mat,wtrow) 
    temp_sorted = temp_df.sort_values(by='val')
    temp_sorted.reset_index(inplace=True,drop=True)
    #we must divide by the total number of counts in each bin for the MI calculator
    #temp_sorted[col_headers] = temp_sorted[col_headers].div(temp_sorted['ct'],axis=0)     
    MI = EstimateMutualInfoforMImax.alt4(temp_sorted,coarse_graining_level=coarse_graining_level)
    if not err:
        Std = np.NaN
    else:
        data_df_for_sub = data_df.copy()
        sub_MI = np.zeros(15)
        for i in range(15):
            sub_df = data_df_for_sub.sample(int(len(data_df_for_sub.index)/2))
            sub_df.reset_index(inplace=True,drop=True)
            sub_MI[i],sub_std = main(
                sub_df,model_df,err=False)
        Std = np.std(sub_MI)/np.sqrt(2)
    return MI,Std
コード例 #5
0
ファイル: test_seqvarray.py プロジェクト: atareen/mpathic
def dataset2seqarray(dataset_df, modeltype):
    # Determine the type of model and set seq2array function appropriately
    if modeltype=='MAT':
        seqs2array = mpathic.fast.seqs2array_for_matmodel
    elif modeltype=='NBR':
        seqs2array = mpathic.fast.seqs2array_for_nbrmodel
    else:
        raise SortSeqError('Unknown model type: %s'%modeltype)
    seqcol = qc.get_cols_from_df(dataset_df,'seqs')[0]  
    seqtype = qc.colname_to_seqtype_dict[seqcol]
    seqlist = list(dataset_df[seqcol])
    seqarray = seqs2array(seqlist, seq_type=seqtype)
    return seqarray
コード例 #6
0
ファイル: Models.py プロジェクト: jbkinney/mpathic
    def __init__(self,model_df):
        """
        Constructor takes model parameters in the form of a model dataframe
        """
        model_df = qc.validate_model(model_df.copy(),fix=True)
        seqtype, modeltype = qc.get_model_type(model_df)
        if not modeltype=='NBR':
            raise SortSeqError('Invalid modeltype: %s'%modeltype)

        seq_dict,inv_dict = utils.choose_dict(seqtype,modeltype=modeltype)
        self.seqtype = seqtype
        self.seq_dict = seq_dict
        self.inv_dict = inv_dict
        self.df = model_df
        self.length = model_df.shape[0]+1

        # Extract matrix part of model dataframe
        headers = qc.get_cols_from_df(model_df,'vals')
        self.matrix = np.transpose(np.array(model_df[headers]))
コード例 #7
0
ファイル: test_seqvarray.py プロジェクト: atareen/mpathic
def dataset2mutarray(dataset_df, modeltype,\
    chunksize=1000, rowsforwtcalc=100, forfitting=True):

    # Determine the type of model and set seq2array function appropriately
    if modeltype=='MAT':
        seqs2array = mpathic.fast.seqs2array_for_matmodel
    elif modeltype=='NBR':
        seqs2array = mpathic.fast.seqs2array_for_nbrmodel
    else:
        raise SortSeqError('Unknown model type: %s'%modeltype)

    # Determine seqtype, etc.
    seqcol = qc.get_cols_from_df(dataset_df,'seqs')[0]
    seqtype = qc.colname_to_seqtype_dict[seqcol]
    wtcol = qc.seqtype_to_wtcolname_dict[seqtype]

    # Compute the wt sequence
    rowsforwtcalc = min(rowsforwtcalc,dataset_df.shape[0])
    dataset_head_df = dataset_df.head(rowsforwtcalc)
    mut_df = profile_mut(dataset_head_df)
    wtseq = ''.join(list(mut_df[wtcol]))
    wtrow = seqs2array([wtseq], seq_type=seqtype).ravel().astype(bool)
    numfeatures = len(wtrow)

    # Process dataframe in chunks
    startrow = 0
    endrow = startrow+chunksize-1
    numrows = dataset_df.shape[0]

    # Fill in mutarray (a lil matrix) chunk by chunk
    mutarray_lil = lil_matrix((numrows,numfeatures),dtype=int)
    matrix_filled = False
    while not matrix_filled:

        if startrow >= numrows:
            matrix_filled = True
            continue
        elif endrow >= numrows:
            endrow = numrows-1
            matrix_filled = True

        # Compute seqarray
        seqlist = list(dataset_df[seqcol][startrow:(endrow+1)])
        seqarray = seqs2array(seqlist, seq_type=seqtype)

        # Remove wt entries
        tmp = seqarray.copy()
        tmp[:,wtrow] = 0

        # Store results from this chunk
        mutarray_lil[startrow:(endrow+1),:] = tmp

        # Increment rows
        startrow = endrow+1
        endrow = startrow + chunksize - 1

    # Convert to csr matrix
    mutarray_csr = mutarray_lil.tocsr()

    # Return vararray as well as binary representation of wt seq
    return mutarray_csr, wtrow
コード例 #8
0
ファイル: learn_model.py プロジェクト: jbkinney/mpathic
def main(df,lm='IM',modeltype='MAT',LS_means_std=None,\
    db=None,iteration=30000,burnin=1000,thin=10,\
    runnum=0,initialize='LS',start=0,end=None,foreground=1,\
    background=0,alpha=0,pseudocounts=1,test=False,drop_library=False,\
    verbose=False):
    
    # Determine dictionary
    seq_cols = qc.get_cols_from_df(df,'seqs')
    if not len(seq_cols)==1:
        raise SortSeqError('Dataframe has multiple seq cols: %s'%str(seq_cols))
    dicttype = qc.colname_to_seqtype_dict[seq_cols[0]]

    seq_dict,inv_dict = utils.choose_dict(dicttype,modeltype=modeltype)
    
    '''Check to make sure the chosen dictionary type correctly describes
         the sequences. An issue with this test is that if you have DNA sequence
         but choose a protein dictionary, you will still pass this test bc A,C,
         G,T are also valid amino acids'''
    #set name of sequences column based on type of sequence
    type_name_dict = {'dna':'seq','rna':'seq_rna','protein':'seq_pro'}
    seq_col_name = type_name_dict[dicttype]
    lin_seq_dict,lin_inv_dict = utils.choose_dict(dicttype,modeltype='MAT')
    #wtseq = utils.profile_counts(df.copy(),dicttype,return_wtseq=True,start=start,end=end)
    #wt_seq_dict_list = [{inv_dict[np.mod(i+1+seq_dict[w],len(seq_dict))]:i for i in range(len(seq_dict)-1)} for w in wtseq]
    par_seq_dict = {v:k for v,k in seq_dict.items() if k != (len(seq_dict)-1)}
    #drop any rows with ct = 0
    df = df[df.loc[:,'ct'] != 0]
    df.reset_index(drop=True,inplace=True)
    
    #If there are sequences of different lengths, then print error but continue
    if len(set(df[seq_col_name].apply(len))) > 1:
         sys.stderr.write('Lengths of all sequences are not the same!')
    #select target sequence region
    df.loc[:,seq_col_name] = df.loc[:,seq_col_name].str.slice(start,end)
    df = utils.collapse_further(df)
    col_headers = utils.get_column_headers(df)
    #make sure all counts are ints
    df[col_headers] = df[col_headers].astype(int)
    #create vector of column names
    val_cols = ['val_' + inv_dict[i] for i in range(len(seq_dict))]
    df.reset_index(inplace=True,drop=True)
    #Drop any sequences with incorrect length
    if not end:
        '''is no value for end of sequence was supplied, assume first seq is
            correct length'''
        seqL = len(df[seq_col_name][0]) - start
    else:
        seqL = end-start
    df = df[df[seq_col_name].apply(len) == (seqL)]
    df.reset_index(inplace=True,drop=True)
    #Do something different for each type of learning method (lm)
    if lm == 'ER':
        emat = Berg_von_Hippel(
            df,dicttype,foreground=foreground,background=background,
            pseudocounts=pseudocounts)
    if lm == 'LS':
        '''First check that is we don't have a penalty for ridge regression,
            that we at least have all possible base values so that the analysis
            will not fail'''
        if LS_means_std: #If user supplied preset means and std for each bin
            means_std_df = io.load_meanstd(LS_means_std)

            #change bin number to 'ct_number' and then use as index
            labels = list(means_std_df['bin'].apply(add_label))
            std = means_std_df['std']
            std.index = labels
            #Change Weighting of each sequence by dividing counts by bin std
            df[labels] = df[labels].div(std)
            means = means_std_df['mean']
            means.index = labels
        else:
            means = None
        #drop all rows without counts
        df['ct'] = df[col_headers].sum(axis=1)
        df = df[df.ct != 0]        
        df.reset_index(inplace=True,drop=True)
        ''' For sort-seq experiments, bin_0 is library only and isn't the lowest
            expression even though it is will be calculated as such if we proceed.
            Therefore is drop_library is passed, drop this column from analysis.'''
        if drop_library:
            try:     
                df.drop('ct_0',inplace=True)
                col_headers = utils.get_column_headers(df)
                if len(col_headers) < 2:
                    raise SortSeqError(
                        '''After dropping library there are no longer enough 
                        columns to run the analysis''')
            except:
                raise SortSeqError('''drop_library option was passed, but no ct_0
                    column exists''')
        #parameterize sequences into 3xL vectors
                               
        raveledmat,batch,sw = utils.genweightandmat(
                                  df,par_seq_dict,dicttype,means=means,modeltype=modeltype)
        #Use ridge regression to find matrix.       
        emat = Compute_Least_Squares(raveledmat,batch,sw,alpha=alpha)

    if lm == 'IM':
        seq_mat,wtrow = numerics.dataset2mutarray(df.copy(),modeltype)
        #this is also an MCMC routine, do the same as above.
        if initialize == 'rand':
            if modeltype == 'MAT':
                emat_0 = utils.RandEmat(len(df[seq_col_name][0]),len(seq_dict))
            elif modeltype == 'NBR':
                emat_0 = utils.RandEmat(len(df['seq'][0])-1,len(seq_dict))
        elif initialize == 'LS':
            emat_cols = ['val_' + inv_dict[i] for i in range(len(seq_dict))]
            emat_0_df = main(df.copy(),lm='LS',modeltype=modeltype,alpha=alpha,start=0,end=None,verbose=verbose)
            emat_0 = np.transpose(np.array(emat_0_df[emat_cols]))   
            #pymc doesn't take sparse mat        
        emat = MaximizeMI_memsaver(
                seq_mat,df.copy(),emat_0,wtrow,db=db,iteration=iteration,burnin=burnin,
                thin=thin,runnum=runnum,verbose=verbose)
    #now format the energy matrices to get them ready to output
    if (lm == 'IM' or lm == 'memsaver'):       
        if modeltype == 'NBR':
             emat_typical = gauge.fix_neighbor(np.transpose(emat))
        elif modeltype == 'MAT':
             emat_typical = gauge.fix_matrix(np.transpose(emat))
    
    elif lm == 'ER': 
        '''the emat for this format is currently transposed compared to other formats
        it is also already a data frame with columns [pos,val_...]'''
        emat_cols = ['val_' + inv_dict[i] for i in range(len(seq_dict))]
        emat_typical = emat[emat_cols]
        emat_typical = (gauge.fix_matrix((np.array(emat_typical))))
        
    else: #must be Least squares
        emat_typical = utils.emat_typical_parameterization(emat,len(seq_dict))        
        if modeltype == 'NBR':
             emat_typical = gauge.fix_neighbor(np.transpose(emat_typical))
        elif modeltype == 'MAT':
             emat_typical = gauge.fix_matrix(np.transpose(emat_typical))
    
    em = pd.DataFrame(emat_typical)
    em.columns = val_cols
    #add position column
    if modeltype == 'NBR':
        pos = pd.Series(range(start,start - 1 + len(df[seq_col_name][0])),name='pos') 
    else:
        pos = pd.Series(range(start,start + len(df[seq_col_name][0])),name='pos')    
    output_df = pd.concat([pos,em],axis=1)

    # Validate model and return
    output_df = qc.validate_model(output_df,fix=True)
    return output_df
コード例 #9
0
def main(data_df,
         model_df,
         start=0,
         end=None,
         err=False,
         coarse_graining_level=0,
         rsquared=False,
         return_freg=False):

    #determine whether you are working with RNA, DNA, or protein.
    #this also should determine modeltype (MAT, NBR, PAIR).
    dicttype, modeltype = qc.get_model_type(model_df)

    #get column header for the sequence column.
    seq_cols = qc.get_cols_from_df(data_df, 'seqs')
    if not len(seq_cols) == 1:
        raise SortSeqError('Dataframe has multiple seq cols: %s' %
                           str(seq_cols))

    #create dictionary that goes from, for example, nucleotide to number and
    #visa versa.
    seq_dict, inv_dict = utils.choose_dict(dicttype, modeltype=modeltype)

    #set name of sequences column based on type of sequence
    type_name_dict = {'dna': 'seq', 'rna': 'seq_rna', 'protein': 'seq_pro'}
    seq_col_name = type_name_dict[dicttype]

    if not end:
        seqL = len(data_df[seq_col_name][0]) - start
    else:
        seqL = end - start
    #throw out wrong length sequences.
    #Cut the sequences based on start and end, and then check if it makes sense
    if (start != 0 or end):
        data_df.loc[:,seq_col_name] = \
            data_df.loc[:,seq_col_name].str.slice(start,end)
        right_length = data_df.loc[:, seq_col_name].apply(len) == (seqL)
        if not right_length.all():
            sys.stderr.write('''Not all sequences are the same length! 
                       Throwing out incorrect sequences!''')
            data_df = data_df.loc[right_length, :]
        data_df = data_df.reset_index(drop=True)

        if modeltype == 'MAT':
            if seqL != len(model_df.loc[:, 'pos']):
                raise SortSeqError(
                    'model length does not match dataset length')
        elif modeltype == 'NBR':
            if seqL != len(model_df.loc[:, 'pos']) + 1:
                raise SortSeqError(
                    'model length does not match dataset length')
        elif modeltype == 'PAIR':
            if int(scipy.misc.comb(seqL, 2)) != len(model_df.loc[:, 'pos']):
                raise SortSeqError(
                    'model length does not match dataset length')

    #get column names of the counts columns (excluding total counts 'ct')
    col_headers = utils.get_column_headers(data_df)
    if 'ct' not in data_df.columns:
        data_df['ct'] = data_df[col_headers].sum(axis=1)

    #remove empty rows.
    data_df = data_df[data_df.ct != 0]

    #determine sequence length.

    #make a numpy array out of the model data frame
    model_df_headers = [
        'val_' + str(inv_dict[i]) for i in range(len(seq_dict))
    ]
    value = np.array(model_df[model_df_headers])

    #now we evaluate the expression of each sequence according to the model.
    #first convert to matrix representation of sequences
    seq_mat, wtrow = numerics.dataset2mutarray(data_df.copy(), modeltype)
    temp_df = data_df.copy()

    #evaluate energy of each sequence
    temp_df['val'] = numerics.eval_modelmatrix_on_mutarray(
        value, seq_mat, wtrow)

    #sort based on value
    temp_sorted = temp_df.sort_values(by='val')
    temp_sorted.reset_index(inplace=True, drop=True)

    #freg is a regularized plot which show how sequences are distributed
    #in energy space.
    if return_freg:
        fig, ax = plt.subplots()
        MI, freg = EstimateMutualInfoforMImax.alt4(
            temp_sorted,
            coarse_graining_level=coarse_graining_level,
            return_freg=return_freg)
        plt.imshow(freg, interpolation='nearest', aspect='auto')

        plt.savefig(return_freg)
    else:
        MI = EstimateMutualInfoforMImax.alt4(
            temp_sorted,
            coarse_graining_level=coarse_graining_level,
            return_freg=return_freg)

    #if we want to calculate error then use bootstrapping.
    if not err:
        Std = np.NaN
    else:
        data_df_for_sub = data_df.copy()
        sub_MI = np.zeros(15)
        for i in range(15):
            sub_df = data_df_for_sub.sample(int(
                len(data_df_for_sub.index) / 2))
            sub_df.reset_index(inplace=True, drop=True)
            sub_MI[i], sub_std = main(sub_df, model_df, err=False)
        Std = np.std(sub_MI) / np.sqrt(2)

    #we can return linfoot corrolation (rsquared) or return MI.
    if rsquared:
        return (1 - 2**(-2 * MI)), (1 - 2**(-2 * Std))
    else:
        return MI, Std
コード例 #10
0
def main(dataset_df,
         bin=None,
         start=0,
         end=None,
         bins_df=None,
         pseudocounts=1,
         return_profile=False):
    """
    Computes character frequencies (0.0 to 1.0) at each position

    Arguments:
        dataset_df (pd.DataFrame): A dataframe containing a valid dataset.
        bin (int): A bin number specifying which counts to use
        start (int): An integer specifying the sequence start position
        end (int): An integer specifying the sequence end position

    Returns:
        freq_df (pd.DataFrame): A dataframe containing counts for each 
        nucleotide/amino acid character at each position. 
    """
    seq_cols = qc.get_cols_from_df(dataset_df, 'seqs')
    if not len(seq_cols) == 1:
        raise SortSeqError('Dataframe has multiple seq cols: %s' %
                           str(seq_cols))
    dicttype = qc.colname_to_seqtype_dict[seq_cols[0]]

    seq_dict, inv_dict = utils.choose_dict(dicttype)
    # Validate dataset_df
    qc.validate_dataset(dataset_df)

    #for each bin we need to find character frequency profile, then sum over all
    #bins to get activity.

    #first make sure we have activities of each bin:
    if not bins_df:
        bins = utils.get_column_headers(dataset_df)
        #in this case no activity was specified so just assume the activity
        #equals bin number
        activity = [float(b.split('_')[-1]) for b in bins]
    else:
        bins = list(bins_df['bins'])
        activity = list(bins_df['activity'])

    #initialize dataframe for total counts in all bins
    output_ct_df = pd.DataFrame()
    #initialize dataframe for running activity calculation
    output_activity_df = pd.DataFrame()

    for i, b in enumerate(bins):
        bin_num = int(b.split('_')[-1])
        # Compute counts
        counts_df = profile_ct.main(dataset_df,
                                    bin=bin_num,
                                    start=start,
                                    end=end)

        # Create columns for profile_freqs table
        ct_cols = utils.get_column_headers(counts_df)
        #add_pseudocounts
        counts_df[ct_cols] = counts_df[ct_cols] + pseudocounts

        #add to all previous bin counts
        #print output_activity_df
        if i == 0:
            output_ct_df = counts_df[ct_cols]
            output_activity_df = counts_df[ct_cols] * activity[i]
        else:
            output_ct_df = output_ct_df + counts_df[ct_cols]
            output_activity_df = output_activity_df + counts_df[
                ct_cols] * activity[i]

    #now normalize by each character at each position, this is the activity
    #profile

    output_activity_df = output_activity_df[ct_cols].div(output_ct_df[ct_cols])

    mut_rate = profile_mut.main(dataset_df, bin=bin)
    freq = profile_freq.main(dataset_df, bin=bin)
    freq_cols = [x for x in freq.columns if 'freq_' in x]
    #now normalize by the wt activity
    wtseq = ''.join(mut_rate['wt'])
    wtarr = utils.seq2mat(wtseq, seq_dict)

    wt_activity = np.transpose(wtarr) * (np.array(output_activity_df[ct_cols]))

    #sum this to get total
    wt_activity2 = wt_activity.sum(axis=1)
    delta_activity = output_activity_df.subtract(pd.Series(wt_activity2),
                                                 axis=0)
    if return_profile:
        #first find mutation rate according to formula in SI text
        profile_delta_activity = mut_rate['mut']*np.sum(
            (1-np.transpose(wtarr))*np.array(\
            freq[freq_cols])*np.array(delta_activity),axis=1)
        #format into dataframe
        output_df = pd.DataFrame()
        output_df['pos'] = range(start,
                                 start + len(profile_delta_activity.index))
        output_df['mut_activity'] = profile_delta_activity
        return output_df
    else:
        #just add pos column and rename counts columns to activity columns
        output_df = pd.DataFrame(delta_activity)
        output_df.insert(0, 'pos',
                         range(start, start + len(delta_activity.index)))
        #reorder columns

        activity_col_dict = {x:'activity_' + x.split('_')[-1] \
            for x in delta_activity.columns if 'ct_' in x}
        output_df = output_df.rename(columns=activity_col_dict)
        return output_df