def evaluate(self,seqs): # Check seqs container if isinstance(seqs,pd.DataFrame): seq_col = qc.get_cols_from_df(seqs,'seqs')[0] seqs_to_use = list(seqs[seq_col]) elif not (isinstance(seqs,list) or isinstance(seqs,pd.Series)): raise SortSeqError('Sequences must be input as a list, pd.Series, or pd.DataFrame') else: seqs_to_use = list(seqs) # Check length if len(seqs_to_use[0]) != self.length: raise SortSeqError(\ 'Energy Matrix Length does not equal Sequence Length') # Compute seqmats t0 = time.time() seqarray = fast.seqs2array_for_matmodel(list(seqs_to_use),self.seqtype) t1 = time.time() # Compute and return values vals = self.evaluate_on_seqarray(seqarray) t2 = time.time() #print 't1-t0 = %.4f, t1-t2 = %.4f'%(t1-t0,t2-t1) return vals
def dataset2mutarray(dataset_df, modeltype, chunksize=1000, rowsforwtcalc=100): # Determine the type of model and set seq2array function appropriately if modeltype=='MAT': seqs2array = mpathic.fast.seqs2array_for_matmodel elif modeltype=='NBR': seqs2array = mpathic.fast.seqs2array_for_nbrmodel else: raise SortSeqError('Unknown model type: %s'%modeltype) # Determine seqtype, etc. seqcol = qc.get_cols_from_df(dataset_df,'seqs')[0] seqtype = qc.colname_to_seqtype_dict[seqcol] wtcol = qc.seqtype_to_wtcolname_dict[seqtype] # Compute the wt sequence rowsforwtcalc = min(rowsforwtcalc,dataset_df.shape[0]) dataset_head_df = dataset_df.head(rowsforwtcalc) mut_df = profile_mut(dataset_head_df) wtseq = ''.join(list(mut_df[wtcol])) wtrow = seqs2array([wtseq], seq_type=seqtype).ravel().astype(bool) numfeatures = len(wtrow) # Process dataframe in chunks startrow = 0 endrow = startrow+chunksize-1 numrows = dataset_df.shape[0] # Fill in mutarray (a lil matrix) chunk by chunk mutarray_lil = lil_matrix((numrows,numfeatures),dtype=int) matrix_filled = False while not matrix_filled: if startrow >= numrows: matrix_filled = True continue elif endrow >= numrows: endrow = numrows-1 matrix_filled = True # Compute seqarray seqlist = list(dataset_df[seqcol][startrow:(endrow+1)]) seqarray = seqs2array(seqlist, seq_type=seqtype) # Remove wt entries tmp = seqarray.copy() tmp[:,wtrow] = 0 # Store results from this chunk mutarray_lil[startrow:(endrow+1),:] = tmp # Increment rows startrow = endrow+1 endrow = startrow + chunksize - 1 # Convert to csr matrix mutarray_csr = mutarray_lil.tocsr() # Return vararray as well as binary representation of wt seq return mutarray_csr, wtrow
def main(filelist_df,tags_df=None,indir='./',seq_type=None): """ Merges datasets listed in the filelist_df dataframe """ # Validate filelist qc.validate_filelist(filelist_df) # Read datasets into dictionary indexed by bin number dataset_df_dict = {} for item in filelist_df.iterrows(): # Autodetect fasta, fastq, or text file based on file extension fn = indir+item[1]['file'] b = item[1]['bin'] if re.search(fasta_filename_patterns,fn): df = io.load_dataset(fn,file_type='fasta',seq_type=seq_type) elif re.search(fastq_filename_patterns,fn): df = io.load_dataset(fn,file_type='fastq',seq_type=seq_type) else: df = io.load_dataset(fn,file_type='text',seq_type=seq_type) dataset_df_dict[b] = df # Merge datasets into one out_df = merge_datasets(dataset_df_dict) # Add seqs if given tags_df if not tags_df is None: qc.validate_tagkey(tags_df) tag_col = 'tag' # Test to make sure all tags in dataset are a subset of tags data_tags = set(out_df[tag_col]) all_tags = set(tags_df[tag_col]) if not (data_tags <= all_tags): sys.stderr.write('Some tags probably could not be identified.') # Get name of seq column seq_cols = qc.get_cols_from_df(tags_df, 'seqs') if not len(seq_cols)==1: raise SortSeqError('Multiple seq columns; exaclty 1 required.') seq_col = seq_cols[0] # Set tag to be index column of dataframe tags_df = tags_df.set_index(tag_col) # Add seqs corresponding to each tag tags = out_df[tag_col] seqs = tags_df[seq_col][tags].values if not all([type(x)==str for x in seqs]): raise SortSeqError('Some looked-up seqs are not strings.') out_df[seq_col] = tags_df[seq_col][tags].values qc.validate_dataset(out_df) return out_df
def main( data_df,model_df, start=0,end=None,err=False,coarse_graining_level=0): dicttype, modeltype = qc.get_model_type(model_df) seq_cols = qc.get_cols_from_df(data_df,'seqs') if not len(seq_cols)==1: raise SortSeqError('Dataframe has multiple seq cols: %s'%str(seq_cols)) seq_dict,inv_dict = utils.choose_dict(dicttype,modeltype=modeltype) #set name of sequences column based on type of sequence type_name_dict = {'dna':'seq','rna':'seq_rna','protein':'seq_pro'} seq_col_name = type_name_dict[dicttype] #Cut the sequences based on start and end, and then check if it makes sense if (start != 0 or end): data_df.loc[:,seq_col_name] = data_df.loc[:,seq_col_name].str.slice(start,end) if modeltype=='MAT': if len(data_df.loc[0,seq_col_name]) != len(model_df.loc[:,'pos']): raise SortSeqError('model length does not match dataset length') elif modeltype=='NBR': if len(data_df.loc[0,seq_col_name]) != len(model_df.loc[:,'pos'])+1: raise SortSeqError('model length does not match dataset length') col_headers = utils.get_column_headers(data_df) if 'ct' not in data_df.columns: data_df['ct'] = data_df[col_headers].sum(axis=1) data_df = data_df[data_df.ct != 0] if not end: seqL = len(data_df[seq_col_name][0]) - start else: seqL = end-start data_df = data_df[data_df[seq_col_name].apply(len) == (seqL)] #make a numpy array out of the model data frame model_df_headers = ['val_' + str(inv_dict[i]) for i in range(len(seq_dict))] value = np.transpose(np.array(model_df[model_df_headers])) #now we evaluate the expression of each sequence according to the model. seq_mat,wtrow = numerics.dataset2mutarray(data_df.copy(),modeltype) temp_df = data_df.copy() temp_df['val'] = numerics.eval_modelmatrix_on_mutarray(np.array(model_df[model_df_headers]),seq_mat,wtrow) temp_sorted = temp_df.sort_values(by='val') temp_sorted.reset_index(inplace=True,drop=True) #we must divide by the total number of counts in each bin for the MI calculator #temp_sorted[col_headers] = temp_sorted[col_headers].div(temp_sorted['ct'],axis=0) MI = EstimateMutualInfoforMImax.alt4(temp_sorted,coarse_graining_level=coarse_graining_level) if not err: Std = np.NaN else: data_df_for_sub = data_df.copy() sub_MI = np.zeros(15) for i in range(15): sub_df = data_df_for_sub.sample(int(len(data_df_for_sub.index)/2)) sub_df.reset_index(inplace=True,drop=True) sub_MI[i],sub_std = main( sub_df,model_df,err=False) Std = np.std(sub_MI)/np.sqrt(2) return MI,Std
def dataset2seqarray(dataset_df, modeltype): # Determine the type of model and set seq2array function appropriately if modeltype=='MAT': seqs2array = mpathic.fast.seqs2array_for_matmodel elif modeltype=='NBR': seqs2array = mpathic.fast.seqs2array_for_nbrmodel else: raise SortSeqError('Unknown model type: %s'%modeltype) seqcol = qc.get_cols_from_df(dataset_df,'seqs')[0] seqtype = qc.colname_to_seqtype_dict[seqcol] seqlist = list(dataset_df[seqcol]) seqarray = seqs2array(seqlist, seq_type=seqtype) return seqarray
def __init__(self,model_df): """ Constructor takes model parameters in the form of a model dataframe """ model_df = qc.validate_model(model_df.copy(),fix=True) seqtype, modeltype = qc.get_model_type(model_df) if not modeltype=='NBR': raise SortSeqError('Invalid modeltype: %s'%modeltype) seq_dict,inv_dict = utils.choose_dict(seqtype,modeltype=modeltype) self.seqtype = seqtype self.seq_dict = seq_dict self.inv_dict = inv_dict self.df = model_df self.length = model_df.shape[0]+1 # Extract matrix part of model dataframe headers = qc.get_cols_from_df(model_df,'vals') self.matrix = np.transpose(np.array(model_df[headers]))
def dataset2mutarray(dataset_df, modeltype,\ chunksize=1000, rowsforwtcalc=100, forfitting=True): # Determine the type of model and set seq2array function appropriately if modeltype=='MAT': seqs2array = mpathic.fast.seqs2array_for_matmodel elif modeltype=='NBR': seqs2array = mpathic.fast.seqs2array_for_nbrmodel else: raise SortSeqError('Unknown model type: %s'%modeltype) # Determine seqtype, etc. seqcol = qc.get_cols_from_df(dataset_df,'seqs')[0] seqtype = qc.colname_to_seqtype_dict[seqcol] wtcol = qc.seqtype_to_wtcolname_dict[seqtype] # Compute the wt sequence rowsforwtcalc = min(rowsforwtcalc,dataset_df.shape[0]) dataset_head_df = dataset_df.head(rowsforwtcalc) mut_df = profile_mut(dataset_head_df) wtseq = ''.join(list(mut_df[wtcol])) wtrow = seqs2array([wtseq], seq_type=seqtype).ravel().astype(bool) numfeatures = len(wtrow) # Process dataframe in chunks startrow = 0 endrow = startrow+chunksize-1 numrows = dataset_df.shape[0] # Fill in mutarray (a lil matrix) chunk by chunk mutarray_lil = lil_matrix((numrows,numfeatures),dtype=int) matrix_filled = False while not matrix_filled: if startrow >= numrows: matrix_filled = True continue elif endrow >= numrows: endrow = numrows-1 matrix_filled = True # Compute seqarray seqlist = list(dataset_df[seqcol][startrow:(endrow+1)]) seqarray = seqs2array(seqlist, seq_type=seqtype) # Remove wt entries tmp = seqarray.copy() tmp[:,wtrow] = 0 # Store results from this chunk mutarray_lil[startrow:(endrow+1),:] = tmp # Increment rows startrow = endrow+1 endrow = startrow + chunksize - 1 # Convert to csr matrix mutarray_csr = mutarray_lil.tocsr() # Return vararray as well as binary representation of wt seq return mutarray_csr, wtrow
def main(df,lm='IM',modeltype='MAT',LS_means_std=None,\ db=None,iteration=30000,burnin=1000,thin=10,\ runnum=0,initialize='LS',start=0,end=None,foreground=1,\ background=0,alpha=0,pseudocounts=1,test=False,drop_library=False,\ verbose=False): # Determine dictionary seq_cols = qc.get_cols_from_df(df,'seqs') if not len(seq_cols)==1: raise SortSeqError('Dataframe has multiple seq cols: %s'%str(seq_cols)) dicttype = qc.colname_to_seqtype_dict[seq_cols[0]] seq_dict,inv_dict = utils.choose_dict(dicttype,modeltype=modeltype) '''Check to make sure the chosen dictionary type correctly describes the sequences. An issue with this test is that if you have DNA sequence but choose a protein dictionary, you will still pass this test bc A,C, G,T are also valid amino acids''' #set name of sequences column based on type of sequence type_name_dict = {'dna':'seq','rna':'seq_rna','protein':'seq_pro'} seq_col_name = type_name_dict[dicttype] lin_seq_dict,lin_inv_dict = utils.choose_dict(dicttype,modeltype='MAT') #wtseq = utils.profile_counts(df.copy(),dicttype,return_wtseq=True,start=start,end=end) #wt_seq_dict_list = [{inv_dict[np.mod(i+1+seq_dict[w],len(seq_dict))]:i for i in range(len(seq_dict)-1)} for w in wtseq] par_seq_dict = {v:k for v,k in seq_dict.items() if k != (len(seq_dict)-1)} #drop any rows with ct = 0 df = df[df.loc[:,'ct'] != 0] df.reset_index(drop=True,inplace=True) #If there are sequences of different lengths, then print error but continue if len(set(df[seq_col_name].apply(len))) > 1: sys.stderr.write('Lengths of all sequences are not the same!') #select target sequence region df.loc[:,seq_col_name] = df.loc[:,seq_col_name].str.slice(start,end) df = utils.collapse_further(df) col_headers = utils.get_column_headers(df) #make sure all counts are ints df[col_headers] = df[col_headers].astype(int) #create vector of column names val_cols = ['val_' + inv_dict[i] for i in range(len(seq_dict))] df.reset_index(inplace=True,drop=True) #Drop any sequences with incorrect length if not end: '''is no value for end of sequence was supplied, assume first seq is correct length''' seqL = len(df[seq_col_name][0]) - start else: seqL = end-start df = df[df[seq_col_name].apply(len) == (seqL)] df.reset_index(inplace=True,drop=True) #Do something different for each type of learning method (lm) if lm == 'ER': emat = Berg_von_Hippel( df,dicttype,foreground=foreground,background=background, pseudocounts=pseudocounts) if lm == 'LS': '''First check that is we don't have a penalty for ridge regression, that we at least have all possible base values so that the analysis will not fail''' if LS_means_std: #If user supplied preset means and std for each bin means_std_df = io.load_meanstd(LS_means_std) #change bin number to 'ct_number' and then use as index labels = list(means_std_df['bin'].apply(add_label)) std = means_std_df['std'] std.index = labels #Change Weighting of each sequence by dividing counts by bin std df[labels] = df[labels].div(std) means = means_std_df['mean'] means.index = labels else: means = None #drop all rows without counts df['ct'] = df[col_headers].sum(axis=1) df = df[df.ct != 0] df.reset_index(inplace=True,drop=True) ''' For sort-seq experiments, bin_0 is library only and isn't the lowest expression even though it is will be calculated as such if we proceed. Therefore is drop_library is passed, drop this column from analysis.''' if drop_library: try: df.drop('ct_0',inplace=True) col_headers = utils.get_column_headers(df) if len(col_headers) < 2: raise SortSeqError( '''After dropping library there are no longer enough columns to run the analysis''') except: raise SortSeqError('''drop_library option was passed, but no ct_0 column exists''') #parameterize sequences into 3xL vectors raveledmat,batch,sw = utils.genweightandmat( df,par_seq_dict,dicttype,means=means,modeltype=modeltype) #Use ridge regression to find matrix. emat = Compute_Least_Squares(raveledmat,batch,sw,alpha=alpha) if lm == 'IM': seq_mat,wtrow = numerics.dataset2mutarray(df.copy(),modeltype) #this is also an MCMC routine, do the same as above. if initialize == 'rand': if modeltype == 'MAT': emat_0 = utils.RandEmat(len(df[seq_col_name][0]),len(seq_dict)) elif modeltype == 'NBR': emat_0 = utils.RandEmat(len(df['seq'][0])-1,len(seq_dict)) elif initialize == 'LS': emat_cols = ['val_' + inv_dict[i] for i in range(len(seq_dict))] emat_0_df = main(df.copy(),lm='LS',modeltype=modeltype,alpha=alpha,start=0,end=None,verbose=verbose) emat_0 = np.transpose(np.array(emat_0_df[emat_cols])) #pymc doesn't take sparse mat emat = MaximizeMI_memsaver( seq_mat,df.copy(),emat_0,wtrow,db=db,iteration=iteration,burnin=burnin, thin=thin,runnum=runnum,verbose=verbose) #now format the energy matrices to get them ready to output if (lm == 'IM' or lm == 'memsaver'): if modeltype == 'NBR': emat_typical = gauge.fix_neighbor(np.transpose(emat)) elif modeltype == 'MAT': emat_typical = gauge.fix_matrix(np.transpose(emat)) elif lm == 'ER': '''the emat for this format is currently transposed compared to other formats it is also already a data frame with columns [pos,val_...]''' emat_cols = ['val_' + inv_dict[i] for i in range(len(seq_dict))] emat_typical = emat[emat_cols] emat_typical = (gauge.fix_matrix((np.array(emat_typical)))) else: #must be Least squares emat_typical = utils.emat_typical_parameterization(emat,len(seq_dict)) if modeltype == 'NBR': emat_typical = gauge.fix_neighbor(np.transpose(emat_typical)) elif modeltype == 'MAT': emat_typical = gauge.fix_matrix(np.transpose(emat_typical)) em = pd.DataFrame(emat_typical) em.columns = val_cols #add position column if modeltype == 'NBR': pos = pd.Series(range(start,start - 1 + len(df[seq_col_name][0])),name='pos') else: pos = pd.Series(range(start,start + len(df[seq_col_name][0])),name='pos') output_df = pd.concat([pos,em],axis=1) # Validate model and return output_df = qc.validate_model(output_df,fix=True) return output_df
def main(data_df, model_df, start=0, end=None, err=False, coarse_graining_level=0, rsquared=False, return_freg=False): #determine whether you are working with RNA, DNA, or protein. #this also should determine modeltype (MAT, NBR, PAIR). dicttype, modeltype = qc.get_model_type(model_df) #get column header for the sequence column. seq_cols = qc.get_cols_from_df(data_df, 'seqs') if not len(seq_cols) == 1: raise SortSeqError('Dataframe has multiple seq cols: %s' % str(seq_cols)) #create dictionary that goes from, for example, nucleotide to number and #visa versa. seq_dict, inv_dict = utils.choose_dict(dicttype, modeltype=modeltype) #set name of sequences column based on type of sequence type_name_dict = {'dna': 'seq', 'rna': 'seq_rna', 'protein': 'seq_pro'} seq_col_name = type_name_dict[dicttype] if not end: seqL = len(data_df[seq_col_name][0]) - start else: seqL = end - start #throw out wrong length sequences. #Cut the sequences based on start and end, and then check if it makes sense if (start != 0 or end): data_df.loc[:,seq_col_name] = \ data_df.loc[:,seq_col_name].str.slice(start,end) right_length = data_df.loc[:, seq_col_name].apply(len) == (seqL) if not right_length.all(): sys.stderr.write('''Not all sequences are the same length! Throwing out incorrect sequences!''') data_df = data_df.loc[right_length, :] data_df = data_df.reset_index(drop=True) if modeltype == 'MAT': if seqL != len(model_df.loc[:, 'pos']): raise SortSeqError( 'model length does not match dataset length') elif modeltype == 'NBR': if seqL != len(model_df.loc[:, 'pos']) + 1: raise SortSeqError( 'model length does not match dataset length') elif modeltype == 'PAIR': if int(scipy.misc.comb(seqL, 2)) != len(model_df.loc[:, 'pos']): raise SortSeqError( 'model length does not match dataset length') #get column names of the counts columns (excluding total counts 'ct') col_headers = utils.get_column_headers(data_df) if 'ct' not in data_df.columns: data_df['ct'] = data_df[col_headers].sum(axis=1) #remove empty rows. data_df = data_df[data_df.ct != 0] #determine sequence length. #make a numpy array out of the model data frame model_df_headers = [ 'val_' + str(inv_dict[i]) for i in range(len(seq_dict)) ] value = np.array(model_df[model_df_headers]) #now we evaluate the expression of each sequence according to the model. #first convert to matrix representation of sequences seq_mat, wtrow = numerics.dataset2mutarray(data_df.copy(), modeltype) temp_df = data_df.copy() #evaluate energy of each sequence temp_df['val'] = numerics.eval_modelmatrix_on_mutarray( value, seq_mat, wtrow) #sort based on value temp_sorted = temp_df.sort_values(by='val') temp_sorted.reset_index(inplace=True, drop=True) #freg is a regularized plot which show how sequences are distributed #in energy space. if return_freg: fig, ax = plt.subplots() MI, freg = EstimateMutualInfoforMImax.alt4( temp_sorted, coarse_graining_level=coarse_graining_level, return_freg=return_freg) plt.imshow(freg, interpolation='nearest', aspect='auto') plt.savefig(return_freg) else: MI = EstimateMutualInfoforMImax.alt4( temp_sorted, coarse_graining_level=coarse_graining_level, return_freg=return_freg) #if we want to calculate error then use bootstrapping. if not err: Std = np.NaN else: data_df_for_sub = data_df.copy() sub_MI = np.zeros(15) for i in range(15): sub_df = data_df_for_sub.sample(int( len(data_df_for_sub.index) / 2)) sub_df.reset_index(inplace=True, drop=True) sub_MI[i], sub_std = main(sub_df, model_df, err=False) Std = np.std(sub_MI) / np.sqrt(2) #we can return linfoot corrolation (rsquared) or return MI. if rsquared: return (1 - 2**(-2 * MI)), (1 - 2**(-2 * Std)) else: return MI, Std
def main(dataset_df, bin=None, start=0, end=None, bins_df=None, pseudocounts=1, return_profile=False): """ Computes character frequencies (0.0 to 1.0) at each position Arguments: dataset_df (pd.DataFrame): A dataframe containing a valid dataset. bin (int): A bin number specifying which counts to use start (int): An integer specifying the sequence start position end (int): An integer specifying the sequence end position Returns: freq_df (pd.DataFrame): A dataframe containing counts for each nucleotide/amino acid character at each position. """ seq_cols = qc.get_cols_from_df(dataset_df, 'seqs') if not len(seq_cols) == 1: raise SortSeqError('Dataframe has multiple seq cols: %s' % str(seq_cols)) dicttype = qc.colname_to_seqtype_dict[seq_cols[0]] seq_dict, inv_dict = utils.choose_dict(dicttype) # Validate dataset_df qc.validate_dataset(dataset_df) #for each bin we need to find character frequency profile, then sum over all #bins to get activity. #first make sure we have activities of each bin: if not bins_df: bins = utils.get_column_headers(dataset_df) #in this case no activity was specified so just assume the activity #equals bin number activity = [float(b.split('_')[-1]) for b in bins] else: bins = list(bins_df['bins']) activity = list(bins_df['activity']) #initialize dataframe for total counts in all bins output_ct_df = pd.DataFrame() #initialize dataframe for running activity calculation output_activity_df = pd.DataFrame() for i, b in enumerate(bins): bin_num = int(b.split('_')[-1]) # Compute counts counts_df = profile_ct.main(dataset_df, bin=bin_num, start=start, end=end) # Create columns for profile_freqs table ct_cols = utils.get_column_headers(counts_df) #add_pseudocounts counts_df[ct_cols] = counts_df[ct_cols] + pseudocounts #add to all previous bin counts #print output_activity_df if i == 0: output_ct_df = counts_df[ct_cols] output_activity_df = counts_df[ct_cols] * activity[i] else: output_ct_df = output_ct_df + counts_df[ct_cols] output_activity_df = output_activity_df + counts_df[ ct_cols] * activity[i] #now normalize by each character at each position, this is the activity #profile output_activity_df = output_activity_df[ct_cols].div(output_ct_df[ct_cols]) mut_rate = profile_mut.main(dataset_df, bin=bin) freq = profile_freq.main(dataset_df, bin=bin) freq_cols = [x for x in freq.columns if 'freq_' in x] #now normalize by the wt activity wtseq = ''.join(mut_rate['wt']) wtarr = utils.seq2mat(wtseq, seq_dict) wt_activity = np.transpose(wtarr) * (np.array(output_activity_df[ct_cols])) #sum this to get total wt_activity2 = wt_activity.sum(axis=1) delta_activity = output_activity_df.subtract(pd.Series(wt_activity2), axis=0) if return_profile: #first find mutation rate according to formula in SI text profile_delta_activity = mut_rate['mut']*np.sum( (1-np.transpose(wtarr))*np.array(\ freq[freq_cols])*np.array(delta_activity),axis=1) #format into dataframe output_df = pd.DataFrame() output_df['pos'] = range(start, start + len(profile_delta_activity.index)) output_df['mut_activity'] = profile_delta_activity return output_df else: #just add pos column and rename counts columns to activity columns output_df = pd.DataFrame(delta_activity) output_df.insert(0, 'pos', range(start, start + len(delta_activity.index))) #reorder columns activity_col_dict = {x:'activity_' + x.split('_')[-1] \ for x in delta_activity.columns if 'ct_' in x} output_df = output_df.rename(columns=activity_col_dict) return output_df