コード例 #1
0
def test_arithmetic_cubes():
    image2 = generate_image(data=1, unit='2 ct')
    cube1 = generate_cube(data=0.5, unit=u.Unit('2 ct'))

    for op in (add, sub, mul, div):
        assert_allclose(op(image2, cube1).data, op(image2.data, cube1.data))
        assert_allclose(op(cube1, image2).data, op(cube1.data, image2.data))
コード例 #2
0
ファイル: test_cube.py プロジェクト: musevlt/mpdaf
def test_arithmetic():
    """Cube class: tests arithmetic functions"""
    cube1 = generate_cube(uwave=u.nm)
    image1 = generate_image(wcs=cube1.wcs, unit=2 * u.ct)
    spectrum1 = generate_spectrum(data=2.3, cdelt=30.0, crval=5)
    cube2 = image1 + cube1

    for op in (add, sub, mul, div):
        cube3 = op(cube1, cube2)
        assert_almost_equal(cube3.data, op(cube1.data, cube2.data))

    # with spectrum
    sp1 = spectrum1.data[:, np.newaxis, np.newaxis]
    for op in (add, sub, mul, div):
        cube3 = op(cube1, spectrum1)
        assert_almost_equal(cube3.data, op(cube1.data, sp1))

    # with image
    im1 = image1.data.data[np.newaxis, :, :] * image1.unit
    for op in (add, sub, mul, div):
        cube3 = op(cube1, image1)
        assert_almost_equal(
            cube3._data,
            op(cube1._data * cube1.unit, im1).to(cube3.unit).value)

    cube2 = cube1 / 25.3
    assert_almost_equal(cube2.data, cube1.data / 25.3)
コード例 #3
0
ファイル: test_cube.py プロジェクト: musevlt/mpdaf
def test_arithmetic_variance(cube):
    cube = generate_cube()
    image1 = generate_image(wcs=cube.wcs, var=None)
    cube2 = image1 + cube
    assert_almost_equal(cube.var, cube2.var)

    cube2 = image1 * cube
    assert_almost_equal(cube2.var, cube.var * image1.data * image1.data)

    cube.var = None
    image1 = generate_image(wcs=cube.wcs)
    cube2 = image1 + cube
    assert_almost_equal(cube2.var, np.tile(image1.var, (cube2.shape[0], 1, 1)))

    cube2 = image1 * cube
    assert_almost_equal(cube2.var, image1.var * cube.data * cube.data)
コード例 #4
0
def test_arithmetic_images(image):
    image2 = generate_image(data=1, unit=u.Unit('2 ct'))

    for op in (add, sub, mul, div):
        image3 = op(image, image2)
        assert_allclose(
            image3._data,
            op(image._data * image.unit, image2._data * image2.unit)
            .to(image3.unit).value)
コード例 #5
0
def test_get_item():
    """Image class: testing __getitem__"""
    # Set the shape and contents of the image's data array.
    shape = (4, 5)
    data = np.arange(shape[0] * shape[1]).reshape(shape[0], shape[1])

    # Create a test image with the above data array.
    im = generate_image(data=data, shape=shape)
    im.primary_header['KEY'] = 'primary value'
    im.data_header['KEY'] = 'data value'

    # Select the whole image.
    for r in [im[:, :], im[:]]:
        assert_array_equal(r.shape, im.shape)
        assert_allclose(r.data, im.data)
        assert r.primary_header['KEY'] == im.primary_header['KEY']
        assert r.data_header['KEY'] == im.data_header['KEY']
        assert isinstance(r, Image)
        assert r.wcs.isEqual(im.wcs)
        assert r.wave is None

    # Select a subimage that only has one pixel along the y axis.
    for r in [im[2, :], im[2]]:
        assert_array_equal(r.shape, (1, im.shape[1]))
        assert_allclose(r.data.ravel(), im.data[2, :].ravel())
        assert r.primary_header['KEY'] == im.primary_header['KEY']
        assert r.data_header['KEY'] == im.data_header['KEY']
        assert isinstance(r, Image)
        assert r.wcs.isEqual(im.wcs[2, :])
        assert r.wave is None

    # Select a subimage that only has one pixel along the x axis.
    r = im[:, 2]
    assert_array_equal(r.shape, (im.shape[0], 1))
    assert_allclose(r.data.ravel(), im.data[:, 2].ravel())
    assert r.primary_header['KEY'] == im.primary_header['KEY']
    assert r.data_header['KEY'] == im.data_header['KEY']
    assert isinstance(r, Image)
    assert r.wcs.isEqual(im.wcs[:, 2])
    assert r.wave is None

    # Select a sub-image using a non-scalar slice along each axis.
    r = im[1:2, 2:4]
    assert_array_equal(r.shape, (1, 2))
    assert_allclose(r.data.ravel(), im.data[1:2, 2:4].ravel())
    assert r.primary_header['KEY'] == im.primary_header['KEY']
    assert r.data_header['KEY'] == im.data_header['KEY']
    assert isinstance(r, Image)
    assert r.wcs.isEqual(im.wcs[1:2, 2:4])
    assert r.wave is None

    # Select a single pixel.
    r = im[2, 3]
    assert np.isscalar(r)
    assert_allclose(r, im.data[2, 3])
コード例 #6
0
def test_prepare_data():
    image = generate_image(data=2.0)
    image[1, 1] = np.ma.masked
    image[3:5, 2:4] = np.ma.masked

    data = image._prepare_data()
    assert not np.ma.is_masked(data)
    assert np.allclose(data, 2.0)

    data = image._prepare_data(interp='linear')
    assert not np.ma.is_masked(data)
    assert np.allclose(data, 2.0)
コード例 #7
0
ファイル: test_cube.py プロジェクト: musevlt/mpdaf
def test_arithmetic_errors(cube):
    cube = generate_cube()
    image1 = generate_image(wcs=cube.wcs)
    image1.wcs.set_crval1(10)
    with pytest.raises(ValueError):
        cube2 = image1 + cube

    spectrum1 = generate_spectrum(wave=cube.wave)
    spectrum1.wave.set_crval(25)
    with pytest.raises(ValueError):
        cube2 = spectrum1 + cube

    spectrum1 = generate_spectrum(wave=cube.wave)
    spectrum1.wave.shape = 12
    with pytest.raises(ValueError):
        cube2 = spectrum1 + cube
コード例 #8
0
def test_crop():
    """Image class: testing crop method"""
    # Create an image whose pixels are all masked.

    image1 = generate_image(shape=(9, 7), data=2.0, var=0.5, mask=True)

    # Create a masked array of unmasked values to be assigned to the
    # part of the image, with just a diamond shaped area of pixels
    # unmasked.

    diamond = np.ma.array(data=[[6.0, 2.0, 9.0],
                                [1.0, 4.0, 8.0],
                                [0.0, 5.0, 3.0]],
                          mask=[[True, False, True],
                                [False, False, False],
                                [True, False, True]])

    # Assign the above array to part of the image to clear the mask of
    # an irregular rectangular area of pixels there.

    image1.data[2:5, 1:4] = diamond

    # The following should crop all but the rectangular area that was
    # assigned above.

    image1.crop()

    # Check that the masked data array is as expected.

    assert_masked_allclose(image1.data, diamond)

    # The cropped variance array should look like the following array.

    expected_var = np.ma.array(data=[[0.5, 0.5, 0.5],
                                     [0.5, 0.5, 0.5],
                                     [0.5, 0.5, 0.5]], mask=diamond.mask)

    # Check that the masked variance array is as expected.

    assert_masked_allclose(image1.var, expected_var)

    # Check the WCS characteristics of the cropped image.

    assert_image_equal(image1, shape=(3, 3), start=(2, 1), end=(4, 3))
    assert image1.get_rot() == 0