コード例 #1
0
    def mpi_aoR_loop(self, gs=None, kpts=None, kpts_band=None):
        cell = self.cell
        if kpts is None: kpts = self.kpts
        kpts = numpy.asarray(kpts)

        if gs is None:
            gs = numpy.asarray(self.gs)
        else:
            gs = numpy.asarray(gs)
            if any(gs != self.gs):
                self.non0tab = None
            self.gs = gs
        ngrids = numpy.prod(gs*2+1)

        ni = self._numint
        coords = cell.gen_uniform_grids(gs)
        if self.non0tab is None:
            self.non0tab = ni.make_mask(cell, coords)
        if kpts_band is None:
            aoR = ni.eval_ao(cell, coords, kpts, non0tab=self.non0tab)
            for k in mpi.static_partition(range(len(kpts))):
                yield k, aoR[k]
        else:
            aoR = ni.eval_ao(cell, coords, kpts_band, non0tab=self.non0tab)
            if kpts_band.ndim == 1:
                if rank == 0:
                    yield 0, aoR
                else:
                    return
            else:
                for k in mpi.static_partition(range(len(kpts_band))):
                    yield k, aoR[k]
コード例 #2
0
def get_k_kpts(mydf, dm_kpts, hermi=1, kpts=numpy.zeros((1,3)),
               kpts_band=None, exxdiv=None):
    mydf = _sync_mydf(mydf)
    cell = mydf.cell
    mesh = mydf.mesh
    coords = cell.gen_uniform_grids(mesh)
    ngrids = coords.shape[0]

    if hasattr(dm_kpts, 'mo_coeff'):
        if dm_kpts.ndim == 3:  # KRHF
            mo_coeff = [dm_kpts.mo_coeff]
            mo_occ   = [dm_kpts.mo_occ  ]
        else:  # KUHF
            mo_coeff = dm_kpts.mo_coeff
            mo_occ   = dm_kpts.mo_occ
    elif hasattr(dm_kpts[0], 'mo_coeff'):
        mo_coeff = [dm.mo_coeff for dm in dm_kpts]
        mo_occ   = [dm.mo_occ   for dm in dm_kpts]
    else:
        mo_coeff = None

    kpts = numpy.asarray(kpts)
    dm_kpts = lib.asarray(dm_kpts, order='C')
    dms = _format_dms(dm_kpts, kpts)
    nset, nkpts, nao = dms.shape[:3]

    weight = 1./nkpts * (cell.vol/ngrids)

    kpts_band, input_band = _format_kpts_band(kpts_band, kpts), kpts_band
    nband = len(kpts_band)

    if gamma_point(kpts_band) and gamma_point(kpts):
        vk_kpts = numpy.zeros((nset,nband,nao,nao), dtype=dms.dtype)
    else:
        vk_kpts = numpy.zeros((nset,nband,nao,nao), dtype=numpy.complex128)

    coords = mydf.grids.coords
    ao2_kpts = [numpy.asarray(ao.T, order='C')
                for ao in mydf._numint.eval_ao(cell, coords, kpts=kpts)]
    if input_band is None:
        ao1_kpts = ao2_kpts
    else:
        ao1_kpts = [numpy.asarray(ao.T, order='C')
                    for ao in mydf._numint.eval_ao(cell, coords, kpts=kpts_band)]

    mem_now = lib.current_memory()[0]
    max_memory = mydf.max_memory - mem_now
    blksize = int(min(nao, max(1, (max_memory-mem_now)*1e6/16/4/ngrids/nao)))
    lib.logger.debug1(mydf, 'max_memory %s  blksize %d', max_memory, blksize)
    ao1_dtype = numpy.result_type(*ao1_kpts)
    ao2_dtype = numpy.result_type(*ao2_kpts)
    vR_dm = numpy.empty((nset,nao,ngrids), dtype=vk_kpts.dtype)

    ao_dms_buf = [None] * nkpts
    tasks = [(k1,k2) for k2 in range(nkpts) for k1 in range(nband)]
    for k1, k2 in mpi.static_partition(tasks):
        ao1T = ao1_kpts[k1]
        ao2T = ao2_kpts[k2]
        kpt1 = kpts_band[k1]
        kpt2 = kpts[k2]
        if ao2T.size == 0 or ao1T.size == 0:
            continue

        # If we have an ewald exxdiv, we add the G=0 correction near the
        # end of the function to bypass any discretization errors
        # that arise from the FFT.
        mydf.exxdiv = exxdiv
        if exxdiv == 'ewald' or exxdiv is None:
            coulG = tools.get_coulG(cell, kpt2-kpt1, False, mydf, mesh)
        else:
            coulG = tools.get_coulG(cell, kpt2-kpt1, True, mydf, mesh)
        if is_zero(kpt1-kpt2):
            expmikr = numpy.array(1.)
        else:
            expmikr = numpy.exp(-1j * numpy.dot(coords, kpt2-kpt1))

        if ao_dms_buf[k2] is None:
            if mo_coeff is None:
                ao_dms = [lib.dot(dm[k2], ao2T.conj()) for dm in dms]
            else:
                ao_dms = []
                for i, dm in enumerate(dms):
                    occ = mo_occ[i][k2]
                    mo_scaled = mo_coeff[i][k2][:,occ>0] * numpy.sqrt(occ[occ>0])
                    ao_dms.append(lib.dot(mo_scaled.T, ao2T).conj())
            ao_dms_buf[k2] = ao_dms
        else:
            ao_dms = ao_dms_buf[k2]

        if mo_coeff is None:
            for p0, p1 in lib.prange(0, nao, blksize):
                rho1 = numpy.einsum('ig,jg->ijg', ao1T[p0:p1].conj()*expmikr, ao2T)
                vG = tools.fft(rho1.reshape(-1,ngrids), mesh)
                rho1 = None
                vG *= coulG
                vR = tools.ifft(vG, mesh).reshape(p1-p0,nao,ngrids)
                vG = None
                if vR_dm.dtype == numpy.double:
                    vR = vR.real
                for i in range(nset):
                    numpy.einsum('ijg,jg->ig', vR, ao_dms[i], out=vR_dm[i,p0:p1])
                vR = None
        else:
            for p0, p1 in lib.prange(0, nao, blksize):
                for i in range(nset):
                    rho1 = numpy.einsum('ig,jg->ijg',
                                        ao1T[p0:p1].conj()*expmikr,
                                        ao_dms[i].conj())
                    vG = tools.fft(rho1.reshape(-1,ngrids), mesh)
                    rho1 = None
                    vG *= coulG
                    vR = tools.ifft(vG, mesh).reshape(p1-p0,-1,ngrids)
                    vG = None
                    if vR_dm.dtype == numpy.double:
                        vR = vR.real
                    numpy.einsum('ijg,jg->ig', vR, ao_dms[i], out=vR_dm[i,p0:p1])
                    vR = None
        vR_dm *= expmikr.conj()

        for i in range(nset):
            vk_kpts[i,k1] += weight * lib.dot(vR_dm[i], ao1T.T)

    vk_kpts = mpi.reduce(lib.asarray(vk_kpts))
    if gamma_point(kpts_band) and gamma_point(kpts):
        vk_kpts = vk_kpts.real

    if rank == 0:
        if exxdiv == 'ewald':
            _ewald_exxdiv_for_G0(cell, kpts, dms, vk_kpts, kpts_band=kpts_band)
        return _format_jks(vk_kpts, dm_kpts, input_band, kpts)
コード例 #3
0
ファイル: fft.py プロジェクト: zhcui/mpi4pyscf
def get_pp(mydf, kpts=None):
    mydf = _sync_mydf(mydf)
    cell = mydf.cell
    if kpts is None:
        kpts_lst = numpy.zeros((1, 3))
    else:
        kpts_lst = numpy.reshape(kpts, (-1, 3))
    if abs(kpts_lst).sum() < 1e-9:
        dtype = numpy.float64
    else:
        dtype = numpy.complex128

    mesh = mydf.mesh
    SI = cell.get_SI()
    Gv = cell.get_Gv(mesh)
    vpplocG = pseudo.get_vlocG(cell, Gv)
    vpplocG = -numpy.einsum('ij,ij->j', SI, vpplocG)
    ngrids = len(vpplocG)
    nao = cell.nao_nr()
    nkpts = len(kpts_lst)

    # vpploc evaluated in real-space
    vpplocR = tools.ifft(vpplocG, mesh).real
    vpp = numpy.zeros((nkpts, nao, nao), dtype=dtype)
    for ao_ks_etc, p0, p1 in mydf.mpi_aoR_loop(mydf.grids, kpts_lst):
        ao_ks = ao_ks_etc[0]
        for k, ao in enumerate(ao_ks):
            vpp[k] += lib.dot(ao.T.conj() * vpplocR[p0:p1], ao)
        ao = ao_ks = None
    vpp = mpi.reduce(lib.asarray(vpp))

    # vppnonloc evaluated in reciprocal space
    fakemol = gto.Mole()
    fakemol._atm = numpy.zeros((1, gto.ATM_SLOTS), dtype=numpy.int32)
    fakemol._bas = numpy.zeros((1, gto.BAS_SLOTS), dtype=numpy.int32)
    ptr = gto.PTR_ENV_START
    fakemol._env = numpy.zeros(ptr + 10)
    fakemol._bas[0, gto.NPRIM_OF] = 1
    fakemol._bas[0, gto.NCTR_OF] = 1
    fakemol._bas[0, gto.PTR_EXP] = ptr + 3
    fakemol._bas[0, gto.PTR_COEFF] = ptr + 4

    # buf for SPG_lmi upto l=0..3 and nl=3
    buf = numpy.empty((48, ngrids), dtype=numpy.complex128)

    def vppnl_by_k(kpt):
        Gk = Gv + kpt
        G_rad = lib.norm(Gk, axis=1)
        aokG = ft_ao.ft_ao(cell, Gv, kpt=kpt) * (ngrids / cell.vol)
        vppnl = 0
        for ia in range(cell.natm):
            symb = cell.atom_symbol(ia)
            if symb not in cell._pseudo:
                continue
            pp = cell._pseudo[symb]
            p1 = 0
            for l, proj in enumerate(pp[5:]):
                rl, nl, hl = proj
                if nl > 0:
                    fakemol._bas[0, gto.ANG_OF] = l
                    fakemol._env[ptr + 3] = .5 * rl**2
                    fakemol._env[ptr + 4] = rl**(l + 1.5) * numpy.pi**1.25
                    pYlm_part = dft.numint.eval_ao(fakemol, Gk, deriv=0)

                    p0, p1 = p1, p1 + nl * (l * 2 + 1)
                    # pYlm is real, SI[ia] is complex
                    pYlm = numpy.ndarray((nl, l * 2 + 1, ngrids),
                                         dtype=numpy.complex128,
                                         buffer=buf[p0:p1])
                    for k in range(nl):
                        qkl = pseudo.pp._qli(G_rad * rl, l, k)
                        pYlm[k] = pYlm_part.T * qkl
                    #:SPG_lmi = numpy.einsum('g,nmg->nmg', SI[ia].conj(), pYlm)
                    #:SPG_lm_aoG = numpy.einsum('nmg,gp->nmp', SPG_lmi, aokG)
                    #:tmp = numpy.einsum('ij,jmp->imp', hl, SPG_lm_aoG)
                    #:vppnl += numpy.einsum('imp,imq->pq', SPG_lm_aoG.conj(), tmp)
            if p1 > 0:
                SPG_lmi = buf[:p1]
                SPG_lmi *= SI[ia].conj()
                SPG_lm_aoGs = lib.zdot(SPG_lmi, aokG)
                p1 = 0
                for l, proj in enumerate(pp[5:]):
                    rl, nl, hl = proj
                    if nl > 0:
                        p0, p1 = p1, p1 + nl * (l * 2 + 1)
                        hl = numpy.asarray(hl)
                        SPG_lm_aoG = SPG_lm_aoGs[p0:p1].reshape(
                            nl, l * 2 + 1, -1)
                        tmp = numpy.einsum('ij,jmp->imp', hl, SPG_lm_aoG)
                        vppnl += numpy.einsum('imp,imq->pq', SPG_lm_aoG.conj(),
                                              tmp)
        return vppnl * (1. / ngrids**2)

    vppnl = []
    for kpt in mpi.static_partition(kpts_lst):
        vppnl.append(vppnl_by_k(kpt))
    vppnl = mpi.gather(lib.asarray(vppnl))

    if rank == 0:
        for k in range(nkpts):
            if dtype == numpy.float64:
                vpp[k] += vppnl[k].real
            else:
                vpp[k] += vppnl[k]
        if kpts is None or numpy.shape(kpts) == (3, ):
            vpp = vpp[0]
        return vpp