コード例 #1
0
# can be applied to Cohen’s D (C as done here) or
# statistical values (statscondCluster.F_obs or F_obs_plot)
# of inter-individual brain connectivity

# defining manually bad channel for viz test
epo1.info['bads'] = ['F8', 'Fp2', 'Cz', 'O2']
epo2.info['bads'] = ['F7', 'O1']

# Visualization of inter-brain connectivity in 2D
# defining head model and adding sensors
fig, ax = plt.subplots(1, 1)
ax.axis("off")
vertices, faces = viz.get_3d_heads()
camera = Camera("ortho", theta=90, phi=180, scale=1)
mesh = Mesh(ax, camera.transform @ glm.yrotate(90), vertices, faces,
            facecolors='white',  edgecolors='black', linewidths=.25)
camera.connect(ax, mesh.update)
plt.gca().set_aspect('equal', 'box')
plt.axis('off')
viz.plot_sensors_2d(epo1, epo2, lab=True)  # bads are represented as squares
# plotting links according to sign (red for positive values,
# blue for negative) and value (line thickness increases
# with the strength of connectivity)
viz.plot_links_2d(epo1, epo2, C=C, threshold=2, steps=10)
plt.tight_layout()
plt.show()

# Visualization of inter-brain connectivity in 3D
# defining head model and adding sensors
vertices, faces = viz.get_3d_heads()
コード例 #2
0
    mesh = Mesh(ax,
                camera,
                vertices,
                faces,
                facecolors=white,
                edgecolors=black,
                linewidths=.25)
    ax.text(.99,
            .99,
            "Orthographic (XZ)",
            transform=ax.transAxes,
            ha="right",
            va="top")

    ax = subplot(223)
    camera = ortho @ glm.yrotate(90)
    mesh = Mesh(ax,
                camera,
                vertices,
                faces,
                facecolors=white,
                edgecolors=black,
                linewidths=.25)
    ax.text(.99,
            .99,
            "Orthographic (XY)",
            transform=ax.transAxes,
            ha="right",
            va="top")

    ax = subplot(224)
コード例 #3
0
    import matplotlib.pyplot as plt
    import nibabel as nb

    fig = plt.figure(figsize=(6, 6))
    ax = fig.add_axes([0, 0, 1, 1], xlim=[-1, +1], ylim=[-1, +1], aspect=1)
    ax.axis("off")

    vertices, faces = nb.freesurfer.io.read_geometry('data/lh.pial')
    vertices = glm.fit_unit_cube(vertices)
    facecolors = lighting(vertices[faces],
                          direction=(-1, 0, 0.25),
                          color=(1.0, 0.5, 0.5),
                          specular=True)

    camera = glm.ortho(-1, +1, -1, +1, 1, 100)
    camera = camera @ glm.scale(1.9) @ glm.yrotate(90) @ glm.xrotate(270)

    start = time.time()
    Mesh(ax,
         camera,
         vertices,
         faces,
         facecolors=facecolors,
         linewidths=0,
         mode="front")
    elapsed = time.time() - start

    text = "{0} vertices, {1} faces rendered in {2:.2f} second(s) with matplotlib"
    text = text.format(len(vertices), len(faces), elapsed)
    ax.text(0,
            0,