plt.close() emat0 = emat_mean emat = emat0 - emat0.min(axis=0) # now make the plot site_seq = plottingutils.getwtseq(infofn[namedict[fn]],barcodefn,datafnbase) fig = plt.figure() ax1 = SubplotHost(fig, 1,1,1) fig.add_subplot(ax1) ax2 = ax1.twin() ax1.imshow(emat,interpolation='nearest') ax1.set_xlabel('Position w.r.t. transcription start site') ax1.set_yticks([0,1,2,3]) ax1.set_yticklabels(['A','C','G','T']) # label positions with respect to transcription start site tick_start = int(start_dict[info_dict['exp_name']])+int(info_dict['mut_region_start']) tick_end = int(start_dict[info_dict['exp_name']])+int(info_dict['mut_region_start']) + int(info_dict['mut_region_length']) indices, xtick_labels = clean_up_xticklabels(tick_start,tick_end-tick_start) ax1.set_xticks(indices) ax1.set_xticklabels(xtick_labels) # put the sequence above it ax2.set_yticks([])
plt.title('MI, ' + fnname + ' MI: %.5f' % MI) plt.savefig(os.path.join(outputdir, fnname + '_MItrace.png')) plt.close() emat0 = emat_mean emat = emat0 - emat0.min(axis=0) # now make the plot site_seq = plottingutils.getwtseq(infofn[namedict[fn]], barcodefn, datafnbase) fig = plt.figure() ax1 = SubplotHost(fig, 1, 1, 1) fig.add_subplot(ax1) ax2 = ax1.twin() ax1.imshow(emat, interpolation='nearest') ax1.set_xlabel('Position w.r.t. transcription start site') ax1.set_yticks([0, 1, 2, 3]) ax1.set_yticklabels(['A', 'C', 'G', 'T']) # label positions with respect to transcription start site tick_start = int(start_dict[info_dict['exp_name']]) + int( info_dict['mut_region_start']) tick_end = int(start_dict[info_dict['exp_name']]) + int( info_dict['mut_region_start']) + int( info_dict['mut_region_length']) indices, xtick_labels = clean_up_xticklabels(tick_start, tick_end - tick_start) ax1.set_xticks(indices) ax1.set_xticklabels(xtick_labels)
def plot(self, r1=None, r2=None, nav_im=None, norm='log', scroll_step=1, alpha=0.3, cmap=None, pct=0.1, mradpp=None, widget=None): ''' Interactive plotting of the virtual aperture images. The sliders control the parameters and may be clicked, dragged or scrolled. Clicking on inner (r1) and outer (r2) slider labels sets the radii values to the minimum and maximum, respectively. Parameters ---------- r1 : scalar Inner radius of aperture in pixels. r2 : scalar Inner radius of aperture in pixels. nav_im : None or ndarray Image used for the navigation plot. If None, a blank image is used. norm : None or string: If not None and norm='log', a logarithmic cmap normalisation is used. scroll_step : int Step in pixels used for each scroll event. alpha : float Alpha for aperture plot in [0, 1]. cmap : None or a matplotlib colormap If not None, the colormap used for both plots. pct : scalar Slice image percentile in [0, 50). mradpp : None or scalar mrad per pixel. widget : Pop_Up_Widget A custom class consisting of mutliple widgets ''' from matplotlib.widgets import Slider self._scroll_step = max([1, int(scroll_step)]) self._pct = pct if norm is not None: if norm.lower() == 'log': from matplotlib.colors import LogNorm norm = LogNorm() # condition rs if r1 is not None: self.r1 = r1 else: if self.r1 is None: self.r1 = 0 if r2 is not None: self.r2 = r2 else: if self.r2 is None: self.r2 = int((self.data_shape[-2:] / 4).mean()) self.rc = (self.r2 + self.r1) / 2.0 if nav_im is None: nav_im = np.zeros(self.data_shape[-2:]) # calculate data virtual_image = self.annular_slice(self.r1, self.r2) print("MRADPP", mradpp) # prepare plots if mradpp is None: if widget is not None: print("True") docked = widget.setup_docking("Virtual Annular", "Bottom", figsize=(8.4, 4.8)) fig = docked.get_fig() fig.clf() (ax_nav, ax_cntrst) = fig.subplots(1, 2) self._f_nav = fig else: self._f_nav, (ax_nav, ax_cntrst) = plt.subplots(1, 2, figsize=(8.4, 4.8)) else: # add 2nd x-axis # https://matplotlib.org/examples/axes_grid/parasite_simple2.html from mpl_toolkits.axes_grid1.parasite_axes import SubplotHost import matplotlib.transforms as mtransforms if widget is not None: print("False") docked = widget.setup_docking("Virtual Annular", "Bottom", figsize=(8.4, 4.8)) self._f_nav = docked.get_fig() self._f_nav.clf() else: self._f_nav = plt.figure(figsize=(8.4, 4.8)) ax_nav = SubplotHost(self._f_nav, 1, 2, 1) ax_cntrst = SubplotHost(self._f_nav, 1, 2, 2) aux_trans = mtransforms.Affine2D().scale(1.0 / mradpp, 1.0) ax_mrad = ax_cntrst.twin(aux_trans) ax_mrad.set_viewlim_mode("transform") self._f_nav.add_subplot(ax_nav) self._f_nav.add_subplot(ax_cntrst) ax_mrad.axis["top"].set_label('mrad') ax_mrad.axis["top"].label.set_visible(True) ax_mrad.axis["right"].major_ticklabels.set_visible(False) self._f_nav.subplots_adjust(bottom=0.3, wspace=0.3) if widget is not None: axr1 = fig.add_axes([0.10, 0.05, 0.80, 0.03]) axr2 = fig.add_axes([0.10, 0.10, 0.80, 0.03]) axr3 = fig.add_axes([0.10, 0.15, 0.80, 0.03]) else: axr1 = plt.axes([0.10, 0.05, 0.80, 0.03]) axr2 = plt.axes([0.10, 0.10, 0.80, 0.03]) axr3 = plt.axes([0.10, 0.15, 0.80, 0.03]) val_max = self.r_pix.max() try: self._sr1 = Slider(axr1, 'r1', 0, val_max - 1, valinit=self.r1, valfmt='%0.0f', valstep=1) self._sr2 = Slider(axr2, 'r2', 1, val_max, valinit=self.r2, valfmt='%0.0f', valstep=1) except AttributeError: self._sr1 = Slider(axr1, 'r1', 0, val_max - 1, valinit=self.r1, valfmt='%0.0f') self._sr2 = Slider(axr2, 'r2', 1, val_max, valinit=self.r2, valfmt='%0.0f') self._sr3 = Slider(axr3, 'rc', 1, val_max, valinit=self.rc, valfmt='%0.1f') # these don't seem to work #self._sr1.slider_max = self._sr2 #self._sr2.slider_min = self._sr1 self._sr1.on_changed(self._update_r_from_slider) self._sr2.on_changed(self._update_r_from_slider) self._sr3.on_changed(self._update_rc_from_slider) ax_nav.imshow(nav_im, norm=norm, cmap=cmap) ax_nav.set_xlabel('Detector X (pixels)') ax_nav.set_ylabel('Detector Y (pixels)') # line plot r_cntrst_max = int(np.abs(self.data_shape[-2:] - self.cyx).max()) dw = 1 rs = np.arange(dw, r_cntrst_max) r1, r2 = self.r1, self.r2 sls = np.array([self.annular_slice(r - dw, r) for r in rs]) self.r1, self.r2 = r1, r2 self._contrast_y = np.std(sls, (1, 2))**2 / np.mean(sls, (1, 2)) self._contrast_x = rs - dw / 2.0 ax_cntrst.plot(self._contrast_x, self._contrast_y) ax_cntrst.minorticks_on() ax_cntrst.set_xlabel('Radius (pixels)') ax_cntrst.set_ylabel('Contrast (std^2/mean)') self._span = ax_cntrst.axvspan(self.r1, self.r2, color=[1, 0, 0, 0.1], ec='r') # wedges fc = [0, 0, 0, alpha] ec = 'r' from matplotlib.patches import Wedge self._rmax = val_max + 1 self._w2 = Wedge(self.cyx[::-1], self._rmax, 0, 360, width=self._rmax - self.r2, fc=fc, ec=ec) self._w1 = Wedge(self.cyx[::-1], self.r1, 0, 360, width=self.r1, fc=fc, ec=ec) ax_nav.add_artist(self._w2) ax_nav.add_artist(self._w1) if widget is not None: docked = widget.setup_docking("Virtual Annular", "Bottom", figsize=(8.4, 4.8)) fig = docked.get_fig() fig.clf() ax_im = fig.subplots(1, 1) self._f_im = fig else: self._f_im, ax_im = plt.subplots(1, 1) vmin, vmax = np.percentile(virtual_image, [self._pct, 100 - self._pct]) self._vim = ax_im.imshow(virtual_image, cmap=cmap, vmin=vmin, vmax=vmax) if widget is not None: self._cb = fig.colorbar(self._vim) else: self._cb = plt.colorbar(self._vim) self._cb.set_label('Counts') ax_im.set_xlabel('Scan X (pixels)') ax_im.set_ylabel('Scan Y (pixels)') cid = self._f_nav.canvas.mpl_connect('scroll_event', self._onscroll) self._sr1.label.set_picker(True) self._sr2.label.set_picker(True) cid_pick = self._f_nav.canvas.mpl_connect('pick_event', self._onpick)