コード例 #1
0
def plot_images(dImages, title=None):
    """ Based on dictionary dVectors, multiple vectors are
    plotted next to each other. """

    numbImages = len(dImages)

    # init figure
    fig = plt.figure(figsize=(15, 4))
    grid = axes_grid1.AxesGrid(fig,
                               111,
                               nrows_ncols=(1, numbImages),
                               axes_pad=0.55,
                               # share_all=True,
                               cbar_location="right",
                               cbar_mode="each",
                               cbar_size="5%",
                               cbar_pad="2%",)
    if title is not None:
        fig.suptitle(title)

    # plot vectors from dVectors
    for idx, (key, relVal) in enumerate(dImages.items()):
        im = grid[idx].imshow(relVal, cmap='jet')
        grid[idx].set_title(key)
        grid[idx].axis('off')
        grid.cbar_axes[idx].colorbar(im)

    # finalize figure
    if title is None:
        fig.tight_layout()
    else:
        fig.tight_layout(rect=[0, 0, 0.95, .95])
コード例 #2
0
def show_and_save_power(people, heatmap, name='power.png'):
    fig_power = plt.figure()
    # fig_power.suptitle('Moc', fontsize=12)
    grid = axes_grid1.AxesGrid(
        fig_power,
        111,
        nrows_ncols=(1, 2),
        axes_pad=1,
        cbar_location="right",
        cbar_mode="each",
        cbar_size="5%",
        cbar_pad="5%",
    )
    im1 = grid[0].imshow(people, cmap='plasma', interpolation='nearest')
    grid.cbar_axes[0].colorbar(im1)
    im2 = grid[1].imshow(heatmap,
                         cmap='plasma',
                         interpolation='nearest',
                         vmax=np.max(people))
    grid.cbar_axes[1].colorbar(im2)

    plt.savefig(name, bbox_inches='tight', pad_inches=0.0, dpi=500)
    plt.show()
    return fig_power
コード例 #3
0
W1 = model.layers[0].weights[0].numpy()
B = model.layers[0].weights[1].numpy()
dim = int(W1.shape[1])
W11 = W1[:, 0]
W12 = W1[:, 1]
W11Im = render.vec2im(W11)
W12Im = render.vec2im(W12)

# init figure
fig = plt.figure()
grid = axes_grid1.AxesGrid(
    fig,
    111,
    nrows_ncols=(1, dim),
    axes_pad=0.55,
    share_all=True,
    cbar_location="right",
    cbar_mode="each",
    cbar_size="5%",
    cbar_pad="2%",
)
fig.suptitle('Neural network weights images')

# plot weights
for i in range(dim):
    im = grid[i].imshow(render.vec2im(W1[:, i]), cmap='jet')
    grid[i].set_title('W1{i}'.format(i=i + 1) +
                      ' (bias = {})'.format(round(B[i], 2)))
    grid[i].axis('off')
    grid.cbar_axes[i].colorbar(im)
コード例 #4
0
ファイル: plots.py プロジェクト: Descanonge/myPack
def make_imageGrid(fig, rect=111, **grid_kw):
    """Create a grid using axesgrid1.AxesGrid.

    Returns grid
    """
    return axes_grid1.AxesGrid(fig, rect=111, **grid_kw)
コード例 #5
0
        #A_list.append([(x[1]+0.0001)/sum([i[1] for i in pb]) for x in pb])
    # flipped_A_list=zip(*A_list)
    # print flipped_A_list

    A = np.array([pp for pp in A_list])  #the matrix
    p = PrettyTable()  #prettyprint matrix
    for roar in A:
        p.add_row(roar)

    print p.get_string(header=False, border=True)
    fig = plt.figure()
    grid = axes_grid1.AxesGrid(
        fig,
        111,
        nrows_ncols=(1, 2),
        axes_pad=0.5,
        cbar_location="right",
        cbar_mode="each",
        cbar_size="15%",
        cbar_pad="5%",
    )

    im0 = grid[0].imshow(A, cmap='gist_yarg', interpolation='nearest')
    grid.cbar_axes[0].colorbar(im0)
    plt.show()

    vals, vecs = eigen(A)
    vals[0]
    np.set_printoptions(suppress=True)  # supress scientific notation on screen
    print "Stationary distribution: ", norm(vecs[:, 0])
    bigprob = []
コード例 #6
0
def plotFigure(f, opt, canvas):

    if opt['axesgrid'] is not None:
        fig = plt.figure(figsize=opt['figSize'])
        grid = axesgrid.AxesGrid(fig, 111, **opt['axesgrid'])
        axs = []
        for r in range(opt['nrows']):
            for c in range(opt['ncols']):
                index = r * opt['ncols'] + c
                axs.append(grid[index])
                axis = canvas[index]['axis']
                if 'projection' in axis and axis['projection'] is not None:
                    apy.shell.exit(
                        'Projection needs to be implemented for the axesgrid (plot.py)'
                    )

    elif opt['imagegrid'] is not None:
        fig = plt.figure(figsize=opt['figSize'])
        if 'nrows_ncols' not in opt['imagegrid']:
            opt['imagegrid']['nrows_ncols'] = (opt['nrows'], opt['ncols'])
        grid = axesgrid.ImageGrid(fig, 111, **opt['imagegrid'])
        axs = []
        for r in range(opt['nrows']):
            for c in range(opt['ncols']):
                index = r * opt['ncols'] + c
                axs.append(grid[index])
                axis = canvas[index]['axis']
                if 'projection' in axis and axis['projection'] is not None:
                    apy.shell.exit(
                        'Projection needs to be implemented for the axesgrid (plot.py)'
                    )

    elif opt['gridspec'] is not None:
        # Create a figure using gridspec to get a tight layout
        fig = plt.figure(figsize=opt['figSize'])
        gs = mpl.gridspec.GridSpec(opt['nrows'], opt['ncols'],
                                   **opt['gridspec'])
        #if isinstance(opt['gridspec'],dict):
        #    gs.update(**opt['gridspec'])
        axs = []
        for r in range(opt['nrows']):
            for c in range(opt['ncols']):
                index = r * opt['ncols'] + c
                if opt['merge'] and opt['merge'][0] == index:
                    ax = fig.add_subplot(gs[r, :])
                    axs.append(ax)
                elif opt['merge'] and opt['merge'][1] == index:
                    continue
                else:
                    axs.append(plt.subplot(gs[index]))
                    axis = canvas[index]['axis']
                    if 'projection' in axis and axis['projection'] is not None:
                        apy.shell.exit(
                            'Projection needs to be implemented for the gridspec (plot.py)'
                        )

    else:
        # Create a figure and plot all subplots
        fig = plt.figure(figsize=opt['figSize'])
        axs = []
        for r in range(opt['nrows']):
            for c in range(opt['ncols']):
                index = r * opt['ncols'] + c
                projection = '3d' if canvas[index]['subplot'][3] else None
                figure = fig.add_subplot(opt['nrows'],
                                         opt['ncols'],
                                         index + 1,
                                         projection=projection)
                axs.append(figure)

    for canv in canvas:
        spIndex, spRows, spCols, spXYZ = canv['subplot']
        plotSubplot(axs[spIndex], opt, canv, f)

    if opt['gridspec'] is None and opt['axesgrid'] is None:
        plt.tight_layout()

    # Create a new directory and save the figure
    apy.shell.mkdir(opt['dirResults'], 'u')
    plt.savefig(opt['fileName'] % f, bbox_inches='tight')

    # Close figure
    plt.close(fig)