コード例 #1
0
ファイル: angdist.py プロジェクト: xdic/pyem
def setup_axes(fig, rect, rmax):
    tr_rotate = Affine2D().translate(0, 0)
    tr_scale = Affine2D().scale(np.pi / 180, 1)
    tr = tr_rotate + tr_scale + PolarTransform()
    grid_locator1 = angle_helper.LocatorDMS(12)
    grid_locator2 = angle_helper.LocatorDMS(3)
    tick_formatter1 = angle_helper.FormatterDMS()
    tick_formatter2 = angle_helper.FormatterDMS()
    ra0, ra1 = 0, 180
    cz0, cz1 = 0, rmax
    grid_helper = floating_axes.GridHelperCurveLinear(
        tr, extremes=(ra0, ra1, cz0, cz1),
        grid_locator1=grid_locator1,
        grid_locator2=grid_locator2,
        tick_formatter1=tick_formatter1,
        tick_formatter2=tick_formatter2)
    ax1 = floating_axes.FloatingSubplot(fig, rect, grid_helper=grid_helper)
    fig.add_subplot(ax1)
    ax1.axis["left"].set_axis_direction("bottom")
    ax1.axis["right"].set_axis_direction("top")
    ax1.axis["bottom"].set_visible(False)
    ax1.axis["top"].set_axis_direction("bottom")
    ax1.axis["top"].toggle(ticklabels=True, label=True)
    ax1.axis["top"].major_ticklabels.set_axis_direction("top")
    ax1.axis["top"].label.set_axis_direction("top")
    ax1.axis["top"].label.set_text("Tilt Angle")
    aux_ax = ax1.get_aux_axes(tr)
    aux_ax.patch = ax1.patch
    ax1.patch.zorder = 0.9
    return ax1, aux_ax
コード例 #2
0
def test_polar_box():
    # Remove this line when this test image is regenerated.
    plt.rcParams['text.kerning_factor'] = 6

    fig = plt.figure(figsize=(5, 5))

    # PolarAxes.PolarTransform takes radian. However, we want our coordinate
    # system in degree
    tr = Affine2D().scale(np.pi / 180., 1.) + PolarAxes.PolarTransform()

    # polar projection, which involves cycle, and also has limits in
    # its coordinates, needs a special method to find the extremes
    # (min, max of the coordinate within the view).
    extreme_finder = angle_helper.ExtremeFinderCycle(20, 20,
                                                     lon_cycle=360,
                                                     lat_cycle=None,
                                                     lon_minmax=None,
                                                     lat_minmax=(0, np.inf))

    grid_locator1 = angle_helper.LocatorDMS(12)
    tick_formatter1 = angle_helper.FormatterDMS()

    grid_helper = GridHelperCurveLinear(tr,
                                        extreme_finder=extreme_finder,
                                        grid_locator1=grid_locator1,
                                        tick_formatter1=tick_formatter1)

    ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)

    ax1.axis["right"].major_ticklabels.set_visible(True)
    ax1.axis["top"].major_ticklabels.set_visible(True)

    # let right axis shows ticklabels for 1st coordinate (angle)
    ax1.axis["right"].get_helper().nth_coord_ticks = 0
    # let bottom axis shows ticklabels for 2nd coordinate (radius)
    ax1.axis["bottom"].get_helper().nth_coord_ticks = 1

    fig.add_subplot(ax1)

    ax1.axis["lat"] = axis = grid_helper.new_floating_axis(0, 45, axes=ax1)
    axis.label.set_text("Test")
    axis.label.set_visible(True)
    axis.get_helper().set_extremes(2, 12)

    ax1.axis["lon"] = axis = grid_helper.new_floating_axis(1, 6, axes=ax1)
    axis.label.set_text("Test 2")
    axis.get_helper().set_extremes(-180, 90)

    # A parasite axes with given transform
    ax2 = ParasiteAxes(ax1, tr, viewlim_mode="equal")
    assert ax2.transData == tr + ax1.transData
    # Anything you draw in ax2 will match the ticks and grids of ax1.
    ax1.parasites.append(ax2)
    ax2.plot(np.linspace(0, 30, 50), np.linspace(10, 10, 50))

    ax1.set_aspect(1.)
    ax1.set_xlim(-5, 12)
    ax1.set_ylim(-5, 10)

    ax1.grid(True)
コード例 #3
0
def setup_axes(fig, rect):
    """Polar projection, but in a rectangular box."""

    # see demo_curvelinear_grid.py for details
    tr = Affine2D().scale(np.pi / 180., 1.) + PolarAxes.PolarTransform()

    extreme_finder = angle_helper.ExtremeFinderCycle(
        20,
        20,
        lon_cycle=360,
        lat_cycle=None,
        lon_minmax=None,
        lat_minmax=(0, np.inf),
    )

    grid_locator1 = angle_helper.LocatorDMS(12)
    grid_locator2 = grid_finder.MaxNLocator(5)

    tick_formatter1 = angle_helper.FormatterDMS()

    grid_helper = GridHelperCurveLinear(tr,
                                        extreme_finder=extreme_finder,
                                        grid_locator1=grid_locator1,
                                        grid_locator2=grid_locator2,
                                        tick_formatter1=tick_formatter1)

    ax1 = fig.add_subplot(rect,
                          axes_class=axisartist.Axes,
                          grid_helper=grid_helper)
    ax1.axis[:].set_visible(False)
    ax1.set_aspect(1.)
    ax1.set_xlim(-5, 12)
    ax1.set_ylim(-5, 10)

    return ax1
コード例 #4
0
def curvelinear_test2(fig, rect=111):
    """
    Polar projection, but in a rectangular box.
    """

    # see demo_curvelinear_grid.py for details
    tr = Affine2D().translate(0, 90) + Affine2D().scale(np.pi / 180., 1.) + \
        PolarAxes.PolarTransform()

    extreme_finder = angle_helper.ExtremeFinderCycle(
        10,
        60,
        lon_cycle=360,
        lat_cycle=None,
        lon_minmax=None,
        lat_minmax=(-90, np.inf),
    )
    # Changes theta gridline count
    grid_locator1 = angle_helper.LocatorHMS(12)
    grid_locator2 = angle_helper.LocatorDMS(6)
    tick_formatter1 = angle_helper.FormatterHMS()
    tick_formatter2 = angle_helper.FormatterDMS()

    grid_helper = GridHelperCurveLinear(tr,
                                        extreme_finder=extreme_finder,
                                        grid_locator1=grid_locator1,
                                        grid_locator2=grid_locator2,
                                        tick_formatter1=tick_formatter1,
                                        tick_formatter2=tick_formatter2)

    ax1 = SubplotHost(fig, rect, grid_helper=grid_helper)

    # make ticklabels of right and top axis visible.
    ax1.axis["right"].major_ticklabels.set_visible(True)
    ax1.axis["top"].major_ticklabels.set_visible(True)
    ax1.axis["bottom"].major_ticklabels.set_visible(True)
    # let right and bottom axis show ticklabels for 1st coordinate (angle)
    ax1.axis["right"].get_helper().nth_coord_ticks = 0
    ax1.axis["bottom"].get_helper().nth_coord_ticks = 0

    #
    fig.add_subplot(ax1)

    grid_helper = ax1.get_grid_helper()

    # You may or may not need these - they set the view window explicitly
    # rather than using the default as determined by matplotlib with extreme
    # finder.
    ax1.set_aspect(1.)
    ax1.set_xlim(-4, 25)  # moves the origin left-right in ax1
    ax1.set_ylim(-2.5, 30)  # moves the origin up-down

    ax1.set_ylabel('$DEC\,(^{\circ})$')
    ax1.set_xlabel('$RA\,(h)$')
    ax1.grid(True)
    # ax1.grid(linestyle='--', which='x') # either keyword applies to both
    # ax1.grid(linestyle=':', which='y')  # sets of gridlines

    return ax1, tr
コード例 #5
0
def curvelinear_test2(fig):
    """
    polar projection, but in a rectangular box.
    """
    global ax1
    import numpy as np
    import  mpl_toolkits.axisartist.angle_helper as angle_helper
    from matplotlib.projections import PolarAxes
    from matplotlib.transforms import Affine2D

    from mpl_toolkits.axisartist import SubplotHost

    from mpl_toolkits.axisartist import GridHelperCurveLinear

    # see demo_curvelinear_grid.py for details
    tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform()

    extreme_finder = angle_helper.ExtremeFinderCycle(20, 20,
                                                     lon_cycle = 360,
                                                     lat_cycle = None,
                                                     lon_minmax = None,
                                                     lat_minmax = (0, np.inf),
                                                     )

    grid_locator1 = angle_helper.LocatorDMS(12)

    tick_formatter1 = angle_helper.FormatterDMS()

    grid_helper = GridHelperCurveLinear(tr,
                                        extreme_finder=extreme_finder,
                                        grid_locator1=grid_locator1,
                                        tick_formatter1=tick_formatter1
                                        )


    ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)

    fig.add_subplot(ax1)

    # Now creates floating axis

    #grid_helper = ax1.get_grid_helper()
    # floating axis whose first coordinate (theta) is fixed at 60
    ax1.axis["lat"] = axis = ax1.new_floating_axis(0, 60)
    axis.label.set_text(r"$\theta = 60^{\circ}$")
    axis.label.set_visible(True)

    # floating axis whose second coordinate (r) is fixed at 6
    ax1.axis["lon"] = axis = ax1.new_floating_axis(1, 6)
    axis.label.set_text(r"$r = 6$")

    ax1.set_aspect(1.)
    ax1.set_xlim(-5, 12)
    ax1.set_ylim(-5, 10)

    ax1.grid(True)
コード例 #6
0
def test_curvelinear3():
    fig = plt.figure(figsize=(5, 5))

    tr = (mtransforms.Affine2D().scale(np.pi / 180, 1) +
          mprojections.PolarAxes.PolarTransform())

    grid_locator1 = angle_helper.LocatorDMS(15)
    tick_formatter1 = angle_helper.FormatterDMS()

    grid_locator2 = FixedLocator([2, 4, 6, 8, 10])

    grid_helper = GridHelperCurveLinear(
        tr,
        extremes=(0, 360, 10, 3),
        grid_locator1=grid_locator1,
        grid_locator2=grid_locator2,
        tick_formatter1=tick_formatter1,
        tick_formatter2=None,
    )

    ax1 = FloatingSubplot(fig, 111, grid_helper=grid_helper)
    fig.add_subplot(ax1)

    r_scale = 10
    tr2 = mtransforms.Affine2D().scale(1, 1 / r_scale) + tr
    grid_locator2 = FixedLocator([30, 60, 90])
    grid_helper2 = GridHelperCurveLinear(tr2,
                                         extremes=(0, 360, 10 * r_scale,
                                                   3 * r_scale),
                                         grid_locator2=grid_locator2)

    ax1.axis["right"] = axis = grid_helper2.new_fixed_axis("right", axes=ax1)

    ax1.axis["left"].label.set_text("Test 1")
    ax1.axis["right"].label.set_text("Test 2")

    for an in ["left", "right"]:
        ax1.axis[an].set_visible(False)

    axis = grid_helper.new_floating_axis(1,
                                         7,
                                         axes=ax1,
                                         axis_direction="bottom")
    ax1.axis["z"] = axis
    axis.toggle(all=True, label=True)
    axis.label.set_text("z = ?")
    axis.label.set_visible(True)
    axis.line.set_color("0.5")

    ax2 = ax1.get_aux_axes(tr)

    xx, yy = [67, 90, 75, 30], [2, 5, 8, 4]
    ax2.scatter(xx, yy)
    (l, ) = ax2.plot(xx, yy, "k-")
    l.set_clip_path(ax1.patch)
コード例 #7
0
ファイル: fgcmBasemap.py プロジェクト: provingground-moe/fgcm
    def create_axes(self, rect=111):
        """
        Create a special AxisArtist to overlay grid coordinates.

        Much of this taken from the examples here:
        http://matplotlib.org/mpl_toolkits/axes_grid/users/axisartist.html
        """

        # from curved coordinate to rectlinear coordinate.
        def tr(x, y):
            x, y = np.asarray(x), np.asarray(y)
            return self(x, y)

        # from rectlinear coordinate to curved coordinate.
        def inv_tr(x, y):
            x, y = np.asarray(x), np.asarray(y)
            return self(x, y, inverse=True)

        # Cycle the coordinates
        extreme_finder = angle_helper.ExtremeFinderCycle(20, 20)

        # Find a grid values appropriate for the coordinate.
        # The argument is a approximate number of grid lines.
        grid_locator1 = angle_helper.LocatorD(8, include_last=False)
        grid_locator2 = angle_helper.LocatorD(6, include_last=False)

        # Format the values of the grid
        tick_formatter1 = FormatterFgcm()
        tick_formatter2 = angle_helper.FormatterDMS()

        grid_helper = GridHelperCurveLinear(
            (tr, inv_tr),
            extreme_finder=extreme_finder,
            grid_locator1=grid_locator1,
            grid_locator2=grid_locator2,
            tick_formatter1=tick_formatter1,
            tick_formatter2=tick_formatter2,
        )

        fig = plt.gcf()
        ax = axisartist.Subplot(fig, rect, grid_helper=grid_helper)
        fig.add_subplot(ax)

        ax.axis['left'].major_ticklabels.set_visible(True)
        ax.axis['right'].major_ticklabels.set_visible(True)
        ax.axis['bottom'].major_ticklabels.set_visible(True)
        ax.axis['top'].major_ticklabels.set_visible(True)

        ax.set_xlabel("Right Ascension")
        ax.set_ylabel("Declination")

        return fig, ax
コード例 #8
0
def curvelinear_test2(fig):
    """
    Polar projection, but in a rectangular box.
    """

    # PolarAxes.PolarTransform takes radian. However, we want our coordinate
    # system in degree
    tr = Affine2D().scale(np.pi/180, 1) + PolarAxes.PolarTransform()
    # Polar projection, which involves cycle, and also has limits in
    # its coordinates, needs a special method to find the extremes
    # (min, max of the coordinate within the view).
    extreme_finder = angle_helper.ExtremeFinderCycle(
        nx=20, ny=20,  # Number of sampling points in each direction.
        lon_cycle=360, lat_cycle=None,
        lon_minmax=None, lat_minmax=(0, np.inf),
    )
    # Find grid values appropriate for the coordinate (degree, minute, second).
    grid_locator1 = angle_helper.LocatorDMS(12)
    # Use an appropriate formatter.  Note that the acceptable Locator and
    # Formatter classes are a bit different than that of Matplotlib, which
    # cannot directly be used here (this may be possible in the future).
    tick_formatter1 = angle_helper.FormatterDMS()

    grid_helper = GridHelperCurveLinear(
        tr, extreme_finder=extreme_finder,
        grid_locator1=grid_locator1, tick_formatter1=tick_formatter1)
    ax1 = SubplotHost(fig, 1, 2, 2, grid_helper=grid_helper)

    # make ticklabels of right and top axis visible.
    ax1.axis["right"].major_ticklabels.set_visible(True)
    ax1.axis["top"].major_ticklabels.set_visible(True)
    # let right axis shows ticklabels for 1st coordinate (angle)
    ax1.axis["right"].get_helper().nth_coord_ticks = 0
    # let bottom axis shows ticklabels for 2nd coordinate (radius)
    ax1.axis["bottom"].get_helper().nth_coord_ticks = 1

    fig.add_subplot(ax1)

    ax1.set_aspect(1)
    ax1.set_xlim(-5, 12)
    ax1.set_ylim(-5, 10)

    ax1.grid(True, zorder=0)

    # A parasite axes with given transform
    ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal")
    # note that ax2.transData == tr + ax1.transData
    # Anything you draw in ax2 will match the ticks and grids of ax1.
    ax1.parasites.append(ax2)
    ax2.plot(np.linspace(0, 30, 51), np.linspace(10, 10, 51), linewidth=2)
コード例 #9
0
def curvelinear_test(fig):
    """Polar projection, but in a rectangular box.
    """
    # 创建一个极坐标变换。PolarAxes.PolarTransform使用弧度,但本例
    # 要设置的坐标系中角度的单位为度
    tr = Affine2D().scale(np.pi / 180., 1.) + PolarAxes.PolarTransform()

    # 极坐标投影涉及到周期,在坐标上也有限制,需要一种特殊的方法来找到
    # 坐标的最小值和最大值
    extreme_finder = angle_helper.ExtremeFinderCycle(
        20,
        20,
        lon_cycle=360,
        lat_cycle=None,
        lon_minmax=None,
        lat_minmax=(0, np.inf),
    )
    # 找到适合坐标的网格值(度、分、秒)
    grid_locator1 = angle_helper.LocatorDMS(12)

    # 使用适当的Formatter。请注意,可接受的Locator和Formatter类
    # 与Matplotlib中的相应类稍有不同,后者目前还不能直接在这里使用
    tick_formatter1 = angle_helper.FormatterDMS()

    grid_helper = GridHelperCurveLinear(tr,
                                        extreme_finder=extreme_finder,
                                        grid_locator1=grid_locator1,
                                        tick_formatter1=tick_formatter1)

    ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)

    fig.add_subplot(ax1)

    # 创建浮动坐标轴

    # 浮动坐标轴的第一个坐标(theta)指定为60度
    ax1.axis["lat"] = axis = ax1.new_floating_axis(0, 60)
    axis.label.set_text(r"$\theta = 60^{\circ}$")
    axis.label.set_visible(True)

    # 浮动坐标轴的第二个坐标(r)指定为6
    ax1.axis["lon"] = axis = ax1.new_floating_axis(1, 6)
    axis.label.set_text(r"$r = 6$")

    ax1.set_aspect(1.)
    ax1.set_xlim(-5, 12)
    ax1.set_ylim(-5, 10)

    ax1.grid(True)
コード例 #10
0
def test_curvelinear4():
    # Remove this line when this test image is regenerated.
    plt.rcParams['text.kerning_factor'] = 6

    fig = plt.figure(figsize=(5, 5))

    tr = (mtransforms.Affine2D().scale(np.pi / 180, 1) +
          mprojections.PolarAxes.PolarTransform())

    grid_locator1 = angle_helper.LocatorDMS(5)
    tick_formatter1 = angle_helper.FormatterDMS()

    grid_locator2 = FixedLocator([2, 4, 6, 8, 10])

    grid_helper = GridHelperCurveLinear(tr,
                                        extremes=(120, 30, 10, 0),
                                        grid_locator1=grid_locator1,
                                        grid_locator2=grid_locator2,
                                        tick_formatter1=tick_formatter1,
                                        tick_formatter2=None)

    ax1 = FloatingSubplot(fig, 111, grid_helper=grid_helper)
    fig.add_subplot(ax1)

    ax1.axis["left"].label.set_text("Test 1")
    ax1.axis["right"].label.set_text("Test 2")

    for an in ["top"]:
        ax1.axis[an].set_visible(False)

    axis = grid_helper.new_floating_axis(1,
                                         70,
                                         axes=ax1,
                                         axis_direction="bottom")
    ax1.axis["z"] = axis
    axis.toggle(all=True, label=True)
    axis.label.set_axis_direction("top")
    axis.label.set_text("z = ?")
    axis.label.set_visible(True)
    axis.line.set_color("0.5")

    ax2 = ax1.get_aux_axes(tr)

    xx, yy = [67, 90, 75, 30], [2, 5, 8, 4]
    ax2.scatter(xx, yy)
    l, = ax2.plot(xx, yy, "k-")
    l.set_clip_path(ax1.patch)
コード例 #11
0
def curvelinear_test2(fig):
    """Polar projection, but in a rectangular box."""
    # see demo_curvelinear_grid.py for details
    tr = Affine2D().scale(np.pi / 180., 1.) + PolarAxes.PolarTransform()

    extreme_finder = angle_helper.ExtremeFinderCycle(
        20,
        20,
        lon_cycle=360,
        lat_cycle=None,
        lon_minmax=None,
        lat_minmax=(0, np.inf),
    )

    grid_locator1 = angle_helper.LocatorDMS(12)

    tick_formatter1 = angle_helper.FormatterDMS()

    grid_helper = GridHelperCurveLinear(tr,
                                        extreme_finder=extreme_finder,
                                        grid_locator1=grid_locator1,
                                        tick_formatter1=tick_formatter1)

    ax1 = fig.add_subplot(axes_class=HostAxes, grid_helper=grid_helper)

    # Now creates floating axis

    # floating axis whose first coordinate (theta) is fixed at 60
    ax1.axis["lat"] = axis = ax1.new_floating_axis(0, 60)
    axis.label.set_text(r"$\theta = 60^{\circ}$")
    axis.label.set_visible(True)

    # floating axis whose second coordinate (r) is fixed at 6
    ax1.axis["lon"] = axis = ax1.new_floating_axis(1, 6)
    axis.label.set_text(r"$r = 6$")

    ax1.set_aspect(1.)
    ax1.set_xlim(-5, 12)
    ax1.set_ylim(-5, 10)

    ax1.grid(True)
コード例 #12
0
def setup_axes(fig, rect):
    """
    polar projection, but in a rectangular box.
    """
    # 细节可以参考前面“曲线网格”的例子
    tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform()

    extreme_finder = angle_helper.ExtremeFinderCycle(20, 20,
                                                     lon_cycle=360,
                                                     lat_cycle=None,
                                                     lon_minmax=None,
                                                     lat_minmax=(0, np.inf),
                                                     )

    grid_locator1 = angle_helper.LocatorDMS(12)
    grid_locator2 = grid_finder.MaxNLocator(5)

    tick_formatter1 = angle_helper.FormatterDMS()

    grid_helper = GridHelperCurveLinear(tr,
                                        extreme_finder=extreme_finder,
                                        grid_locator1=grid_locator1,
                                        grid_locator2=grid_locator2,
                                        tick_formatter1=tick_formatter1
                                        )

    ax1 = axisartist.Subplot(fig, rect, grid_helper=grid_helper)
    ax1.axis[:].toggle(ticklabels=False)

    fig.add_subplot(ax1)

    ax1.set_aspect(1.)
    ax1.set_xlim(-5, 12)
    ax1.set_ylim(-5, 10)

    return ax1
コード例 #13
0
def make_polar_axis(figure):
    """
    Generate a polar axis.

    Examples
    --------
    >>> from pylab import *
    >>> f = figure()
    >>> ax1,ax2 = make_polar_axis(f)
    >>> f.add_subplot(ax1)
    """
    # PolarAxes.PolarTransform takes radian. However, we want our coordinate
    # system in degree
    tr = Affine2D().scale(np.pi / 180., 1.) + PolarAxes.PolarTransform()

    # polar projection, which involves cycle, and also has limits in
    # its coordinates, needs a special method to find the extremes
    # (min, max of the coordinate within the view).

    # 20, 20 : number of sampling points along x, y direction
    extreme_finder = angle_helper.ExtremeFinderCycle(
        40,
        40,
        lon_cycle=360,
        lat_cycle=None,
        lon_minmax=None,
        lat_minmax=(0, np.inf),
    )

    grid_locator1 = angle_helper.LocatorDMS(12)
    # Find a grid values appropriate for the coordinate (degree,
    # minute, second).

    tick_formatter1 = angle_helper.FormatterDMS()
    # And also uses an appropriate formatter.  Note that,the
    # acceptable Locator and Formatter class is a bit different than
    # that of mpl's, and you cannot directly use mpl's Locator and
    # Formatter here (but may be possible in the future).

    grid_helper = GridHelperCurveLinear(
        tr,
        extreme_finder=extreme_finder,
        grid_locator1=grid_locator1,
        tick_formatter1=tick_formatter1,
        #tick_formatter2=matplotlib.ticker.FuncFormatter(lambda x: x * kpc_per_pix)
    )

    ax1 = SubplotHost(figure,
                      1,
                      1,
                      1,
                      grid_helper=grid_helper,
                      axisbg='#333333')

    # make ticklabels of right and top axis visible.
    ax1.axis["right"].major_ticklabels.set_visible(True)
    ax1.axis["top"].major_ticklabels.set_visible(True)

    # let right axis shows ticklabels for 1st coordinate (angle)
    ax1.axis["right"].get_helper().nth_coord_ticks = 0
    # let bottom axis shows ticklabels for 2nd coordinate (radius)
    ax1.axis["bottom"].get_helper().nth_coord_ticks = 1

    ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal")

    ax1.parasites.append(ax2)

    return ax1, ax2
コード例 #14
0
def make_mw_plot(fig=None, mw_img_name = "Milky_Way_2005.jpg",
        solar_rad=8.5, fignum=5):
    """
    Generate a "Milky Way" plot with Robert Hurt's Milky Way illustration as
    the background.

    .. TODO:
        Figure out how to fix the axis labels.  They don't work now!

    Parameters
    ----------
    fig : matplotlib.figure instance
        If you want to start with a figure instance, can specify it
    mw_img_name: str
        The name of the image on disk
    solar_rad : float
        The assumed Galactocentric orbital radius of the sun
    fignum : int
        If Figure not specified, use this figure number
    """

    # load image
    mw = np.array(PIL.Image.open(mw_img_name))[:,::-1]

    # set some constants
    npix = mw.shape[0] # must be symmetric
    # Galactic Center in middle of image
    gc_loc = [x/2 for x in mw.shape]

    # Sun is at 0.691 (maybe really 0.7?) length of image
    sun_loc = mw.shape[0]/2,int(mw.shape[1]*0.691)
    # determine scaling
    kpc_per_pix = solar_rad / (sun_loc[1]-gc_loc[1])
    boxsize = npix*kpc_per_pix

    # most of the code below is taken from:
    # http://matplotlib.sourceforge.net/examples/axes_grid/demo_curvelinear_grid.html
    # and http://matplotlib.sourceforge.net/examples/axes_grid/demo_floating_axis.html

    if fig is None:
        fig = plt.figure(fignum)
    plt.clf()

    # PolarAxes.PolarTransform takes radian. However, we want our coordinate
    # system in degree
    # this defines the polar coordinate system @ Galactic center
    tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform()

    # polar projection, which involves cycle, and also has limits in
    # its coordinates, needs a special method to find the extremes
    # (min, max of the coordinate within the view).

    # grid helper stuff, I think (grid is off by default)
    # This may not apply to the image *at all*, but would if you
    # used the grid
    # 40, 40 : number of sampling points along x, y direction
    extreme_finder = angle_helper.ExtremeFinderCycle(40, 40,
                                                     lon_cycle = 360,
                                                     lat_cycle = None,
                                                     lon_minmax = None,
                                                     lat_minmax = (0, np.inf),
                                                     )

    grid_locator1 = angle_helper.LocatorDMS(12)
    # Find a grid values appropriate for the coordinate (degree,
    # minute, second).

    tick_formatter1 = angle_helper.FormatterDMS()
    # And also uses an appropriate formatter.  Note that,the
    # acceptable Locator and Formatter class is a bit different than
    # that of mpl's, and you cannot directly use mpl's Locator and
    # Formatter here (but may be possible in the future).

    grid_helper = GridHelperCurveLinear(tr,
                extreme_finder=extreme_finder,
                grid_locator1=grid_locator1,
                tick_formatter1=tick_formatter1,
                #tick_formatter2=matplotlib.ticker.FuncFormatter(lambda x: x * kpc_per_pix)
                )


    ax = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper, axisbg='#333333')
    fig.add_subplot(ax)
    # ax.transData is still a (rectlinear) pixel coordinate. Only the
    # grids are done in galactocentric coordinate.

    # show the image
    ax.imshow(mw,extent=[-boxsize/2,boxsize/2,-boxsize/2,boxsize/2])

    ax_pixgrid = ax.twin() # simple twin will give you a twin axes,
                           # but with normal grids.

    # to draw heliocentric grids, it is best to update the grid_helper
    # with new transform.

    # need to rotate by -90 deg to get into the standard convention
    tr_helio = Affine2D().scale(np.pi/180., 1.).translate(-np.pi/2.,0) + \
               PolarAxes.PolarTransform() + \
               Affine2D().translate(0,solar_rad)
    # Note that the transform is from the heliocentric coordinate to
    # the pixel coordinate of ax (i.e., ax.transData).

    ax.get_grid_helper().update_grid_finder(aux_trans=tr_helio)

    # Now we defina parasite axes with galactocentric & heliocentric
    # coordinates.

    # A parasite axes with given transform
    gc_polar = ParasiteAxesAuxTrans(ax, tr, "equal")
    ax.parasites.append(gc_polar)
    # note that ax2.transData == tr + galactocentric_axis.transData
    # Anthing you draw in ax2 will match the ticks and grids of galactocentric_axis.

    hc_polar = ParasiteAxesAuxTrans(ax, tr_helio, "equal")
    ax.parasites.append(hc_polar)


    return ax, ax_pixgrid, gc_polar, hc_polar
def test_axis_direction():
    fig = plt.figure(figsize=(5, 5))

    # PolarAxes.PolarTransform takes radian. However, we want our coordinate
    # system in degree
    tr = Affine2D().scale(np.pi / 180., 1.) + PolarAxes.PolarTransform()

    # polar projection, which involves cycle, and also has limits in
    # its coordinates, needs a special method to find the extremes
    # (min, max of the coordinate within the view).

    # 20, 20 : number of sampling points along x, y direction
    extreme_finder = angle_helper.ExtremeFinderCycle(
        20,
        20,
        lon_cycle=360,
        lat_cycle=None,
        lon_minmax=None,
        lat_minmax=(0, np.inf),
    )

    grid_locator1 = angle_helper.LocatorDMS(12)
    tick_formatter1 = angle_helper.FormatterDMS()

    grid_helper = GridHelperCurveLinear(tr,
                                        extreme_finder=extreme_finder,
                                        grid_locator1=grid_locator1,
                                        tick_formatter1=tick_formatter1)

    ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)

    for axis in ax1.axis.values():
        axis.set_visible(False)

    fig.add_subplot(ax1)

    ax1.axis["lat1"] = axis = grid_helper.new_floating_axis(
        0, 130, axes=ax1, axis_direction="left")
    axis.label.set_text("Test")
    axis.label.set_visible(True)
    axis.get_helper()._extremes = 0.001, 10

    ax1.axis["lat2"] = axis = grid_helper.new_floating_axis(
        0, 50, axes=ax1, axis_direction="right")
    axis.label.set_text("Test")
    axis.label.set_visible(True)
    axis.get_helper()._extremes = 0.001, 10

    ax1.axis["lon"] = axis = grid_helper.new_floating_axis(
        1, 10, axes=ax1, axis_direction="bottom")
    axis.label.set_text("Test 2")
    axis.get_helper()._extremes = 50, 130
    axis.major_ticklabels.set_axis_direction("top")
    axis.label.set_axis_direction("top")

    grid_helper.grid_finder.grid_locator1.den = 5
    grid_helper.grid_finder.grid_locator2._nbins = 5

    ax1.set_aspect(1.)
    ax1.set_xlim(-8, 8)
    ax1.set_ylim(-4, 12)

    ax1.grid(True)
コード例 #16
0
ファイル: plotter.py プロジェクト: drsolarcat/icme
def plotGsrResidue(theta,
                   phi,
                   residue,
                   optTheta,
                   optPhi,
                   mvabTheta=None,
                   mvabPhi=None,
                   mvubTheta=None,
                   mvubPhi=None):
    fig = figure()
    fig.clf()

    # some matplotlib setup stuff which I don't fully understand but it works
    tr = Affine2D().scale(pi / 180., 1.) + PolarAxes.PolarTransform()
    extreme_finder = angle_helper.ExtremeFinderCycle(
        20,
        20,
        lon_cycle=360,
        lat_cycle=None,
        lon_minmax=None,
        lat_minmax=(0, inf),
    )
    grid_locator1 = angle_helper.LocatorDMS(12)
    tick_formatter1 = angle_helper.FormatterDMS()
    grid_helper = GridHelperCurveLinear(tr,
                                        extreme_finder=extreme_finder,
                                        grid_locator1=grid_locator1,
                                        tick_formatter1=tick_formatter1)
    ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)
    fig.add_subplot(ax1)
    ax1.axis["right"].major_ticklabels.set_visible(True)
    ax1.axis["top"].major_ticklabels.set_visible(True)
    ax1.axis["right"].get_helper().nth_coord_ticks = 0
    ax1.axis["bottom"].get_helper().nth_coord_ticks = 1

    # draw the filled contoured map in polar coordinates
    ax1.contour(transpose(mat(theta)) * mat(cos(phi * pi / 180)),
                transpose(mat(theta)) * mat(sin(phi * pi / 180)),
                1 / transpose(reshape(residue, (phi.size, -1))),
                100,
                lw=0.1)
    cc = ax1.contourf(
        transpose(mat(theta)) * mat(cos(phi * pi / 180)),
        transpose(mat(theta)) * mat(sin(phi * pi / 180)),
        1 / transpose(reshape(residue, (phi.size, -1))), 100)
    # remove gaps between the contour lines
    for c in cc.collections:
        c.set_antialiased(False)

    # show the MVAB direction
    if mvabTheta is not None and mvabPhi is not None:
        ax1.plot(mvabTheta * cos(mvabPhi * pi / 180),
                 mvabTheta * sin(mvabPhi * pi / 180),
                 'sk',
                 markersize=8)

    # show the MVUB direction
    if mvubTheta is not None and mvubPhi is not None:
        ax1.plot(mvubTheta * cos(mvubPhi * pi / 180),
                 mvubTheta * sin(mvubPhi * pi / 180),
                 'dk',
                 markersize=8)

    # show the optimal direction
    ax1.plot(optTheta * cos(optPhi * pi / 180),
             optTheta * sin(optPhi * pi / 180),
             '.k',
             markersize=15)

    # aspect and initial axes limits
    ax1.set_aspect(1.)
    ax1.set_xlim(-90, 90)
    ax1.set_ylim(-90, 90)

    # add grid
    ax1.grid(True)

    # add colobar
    cb = colorbar(cc, pad=0.07)
    cb.locator = MaxNLocator(14)
    cb.update_ticks()
    cb.set_label(r"$1/\tilde{\mathcal{R}}$")

    # save
    if toSave:
        savefig(resultsDir + '/eps/gsr_ResidualMap.eps', format='eps')
        savefig(resultsDir + '/png/gsr_ResidualMap.png', format='png')
コード例 #17
0
ファイル: polar.py プロジェクト: jrvliet/analysis
def setup_axes(fig, rect, theta, radius, quad):

    # quad controls the quadrant of the plot and controls the orientation
    # of the plot where quad=1 is upper left, 2 is upper right, 3 is
    # lower left, 4 is lower right
    if quad == 1:
        tr_rotate = Affine2D().translate(np.pi / 2.0, 0)
    elif quad == 2:
        tr_rotate = Affine2D().translate(0, 0)
    elif quad == 3:
        tr_rotate = Affine2D().translate(np.pi, 0)
    else:
        tr_rotate = Affine2D().translate(3.0 * np.pi / 2.0, 0)

    tr_scale = Affine2D().scale(np.pi / 180., 1.)

    # PolarAxes.PolarTransform takes radian. However, we want our coordinate
    # system in degree
    tr = tr_scale + tr_rotate + PolarAxes.PolarTransform()

    # Find grid values appropriate for the coordinate (degree).
    # The argument is an approximate number of grids.
    grid_locator1 = angle_helper.LocatorD(2)

    # And also use an appropriate formatter:
    tick_formatter1 = angle_helper.FormatterDMS()

    # set up number of ticks for the r-axis
    grid_locator2 = MaxNLocator(5)
    grid_locator1 = MaxNLocator(6)

    # the extremes are passed to the function
    thetaMin = 0
    thetaMax = 90
    grid_helper = floating_axes.GridHelperCurveLinear(
        tr,
        extremes=(thetaMin, thetaMax, radius[0], radius[1]),
        grid_locator1=grid_locator1,
        grid_locator2=grid_locator2,
        tick_formatter1=tick_formatter1,
        tick_formatter2=None,
    )

    ax1 = floating_axes.FloatingSubplot(fig, rect, grid_helper=grid_helper)
    fig.add_subplot(ax1)

    print ax1.get_xlim()
    print ax1.get_ylim()
    # adjust axis
    # the axis artist lets you call axis with
    # "bottom", "top", "left", "right"
    ax1.axis["left"].set_axis_direction("bottom")
    ax1.axis["right"].set_axis_direction("top")

    ax1.axis["bottom"].set_visible(False)

    ax1.axis["top"].set_axis_direction("bottom")
    ax1.axis["top"].toggle(ticklabels=True, label=True)
    ax1.axis["top"].major_ticklabels.set_axis_direction("top")
    ax1.axis["top"].label.set_axis_direction("top")
    ax1.axis["top"].label.set_text(ur"$\Phi$")

    # Set the axis labels based on the quadrant
    if quad == 1:

        # Set visibilities
        ax1.axis["right"].set_visible(True)
        ax1.axis["left"].set_visible(True)
        ax1.axis["right"].toggle(ticklabels=True, label=True)
        ax1.axis["left"].toggle(ticklabels=False, label=False)

        # Tick Labels
        #ax1.axis["right"].major_ticks.set_axis_direction('right')
        ax1.axis["right"].major_ticklabels.set_axis_direction('bottom')
        #ax1.axis["right"].major_ticklabels.set_pad(-20)
        #ax1.axis["right"].set_axis_direction('top')
        #ax1.axis["right"].set_ticklabel_direction('+')

        # Axis labels
        ax1.axis["right"].label.set_rotation(0)
        ax1.axis["right"].label.set_text("$D$ (kpc)")
        ax1.axis["right"].label.set_pad(20)

    elif quad == 2:
        ax1.axis["left"].set_visible(True)
        ax1.axis["left"].toggle(ticklabels=True, label=True)
        ax1.axis["left"].major_ticklabels.set_axis_direction("bottom")
        ax1.axis["left"].set_axis_direction("bottom")
        ax1.axis["left"].label.set_text("$D$ (kpc)")

    elif quad == 3:
        # Set visibilities
        ax1.axis["right"].set_visible(True)
        ax1.axis["left"].set_visible(True)
        ax1.axis["right"].toggle(ticklabels=False, label=False)
        ax1.axis["left"].toggle(ticklabels=True, label=True)

        # Tick Labels
        #ax1.axis["right"].major_ticks.set_axis_direction('right')
        ax1.axis["left"].major_ticklabels.set_axis_direction('top')
        #ax1.axis["right"].major_ticklabels.set_pad(-20)
        #ax1.axis["right"].set_axis_direction('top')
        #ax1.axis["right"].set_ticklabel_direction('+')

        # Axis labels
        ax1.axis["left"].label.set_rotation(180)
        ax1.axis["left"].label.set_text("$D$ (kpc)")
        ax1.axis["left"].label.set_pad(20)

    else:
        # Set visibilities
        ax1.axis["right"].set_visible(True)
        ax1.axis["left"].set_visible(True)
        ax1.axis["right"].toggle(ticklabels=True, label=True)
        ax1.axis["left"].toggle(ticklabels=False, label=False)

        # Tick Labels
        #ax1.axis["right"].major_ticks.set_axis_direction('right')
        ax1.axis["right"].major_ticklabels.set_axis_direction('top')
        #ax1.axis["right"].major_ticklabels.set_pad(-20)
        #ax1.axis["right"].set_axis_direction('top')
        #ax1.axis["right"].set_ticklabel_direction('+')

        # Axis labels
        ax1.axis["right"].label.set_rotation(180)
        ax1.axis["right"].label.set_text("$D$ (kpc)")
        ax1.axis["right"].label.set_pad(0)

    ax1.grid(True)

    # create a parasite axes
    aux_ax = ax1.get_aux_axes(tr)

    aux_ax.patch = ax1.patch  # for aux_ax to have a clip path as in ax
    ax1.patch.zorder = 0.9  # but this has a side effect that the patch is
    # drawn twice, and possibly over some other
    # artists. So, we decrease the zorder a bit to
    # prevent this.

    return ax1, aux_ax
コード例 #18
0
    #    strad = [ 0 ]
    #    nstat = len( mamp )
    #    while num < nstat:
    #    #  print num, nstat, mphs[num]
    #      if num == 0:
    #        dtrad[num] = math.radians( mphs[num] )
    #        strad[num] = math.radians( sphs[num] )
    #      else:
    #        dtrad.append( math.radians( mphs[num] ))
    #        strad.append( math.radians( sphs[num] ))
    #      num = num + 1

    #angle_ticks = [(0, r"$0$"),                  (.25*pi, r"$\frac{1}{4}\pi$"),                   (.5*pi, r"$\frac{1}{2}\pi$")]
    grid_locator1 = angle_helper.LocatorDMS(12)

    tick_formatter1 = angle_helper.FormatterDMS()

    grid_locator2 = MaxNLocator(2)

    dtrad = (np.array(mphs))
    strad = (np.array(sphs))

    total = np.hstack([dtrad, strad])

    checkrange_s = 0

    def mod_dist(a, b):
        return np.min([np.mod(a - b, 360), np.mod(b - a, 360)])

    for a in total:
        for b in total:
コード例 #19
0
def polar_stuff(fig, telescope):
    # PolarAxes.PolarTransform takes radian. However, we want our coordinate
    # system in degree
    tr = Affine2D().scale(np.pi / 180., 1.).translate(
        +np.pi / 2., 0) + PolarAxes.PolarTransform()

    # polar projection, which involves cycle, and also has limits in
    # its coordinates, needs a special method to find the extremes
    # (min, max of the coordinate within the view).

    # 20, 20 : number of sampling points along x, y direction
    n = 1
    extreme_finder = angle_helper.ExtremeFinderCycle(
        n,
        n,
        lon_cycle=360,
        lat_cycle=None,
        lon_minmax=None,
        lat_minmax=(-90, 90),
    )

    grid_locator1 = angle_helper.LocatorDMS(12)
    # Find a grid values appropriate for the coordinate (degree,
    # minute, second).

    tick_formatter1 = angle_helper.FormatterDMS()
    # And also uses an appropriate formatter.  Note that,the
    # acceptable Locator and Formatter class is a bit different than
    # that of mpl's, and you cannot directly use mpl's Locator and
    # Formatter here (but may be possible in the future).

    grid_helper = GridHelperCurveLinear(tr,
                                        extreme_finder=extreme_finder,
                                        grid_locator1=grid_locator1,
                                        tick_formatter1=tick_formatter1)

    ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)

    # make ticklabels of right and top axis visible.
    ax1.axis["right"].major_ticklabels.set_visible(True)
    ax1.axis["top"].major_ticklabels.set_visible(True)

    # let right axis shows ticklabels for 1st coordinate (angle)
    ax1.axis["right"].get_helper().nth_coord_ticks = 0
    # let bottom axis shows ticklabels for 2nd coordinate (radius)
    ax1.axis["bottom"].get_helper().nth_coord_ticks = 1

    fig.add_subplot(ax1)

    # A parasite axes with given transform
    ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal")
    # note that ax2.transData == tr + ax1.transData
    # Anything you draw in ax2 will match the ticks and grids of ax1.
    ax1.parasites.append(ax2)
    # intp = cbook.simple_linear_interpolation
    #ax2.plot(intp(np.array([0, 30]), 50),
    #         intp(np.array([10., 10.]), 50),
    #         linewidth=2.0)

    x = np.rad2deg(telescope.az.value) * np.cos(telescope.alt.value)
    y = np.rad2deg(telescope.alt.value)

    circle = plt.Circle(
        (np.rad2deg(telescope.az.value - np.pi) * np.sin(telescope.alt.value),
         np.rad2deg(-telescope.alt.value * np.cos(
             (telescope.az.value - np.pi)))),
        radius=7.7 / 2,
        color="red",
        alpha=0.2,
    )

    circle = plt.Circle(
        (x, y),
        radius=7.7 / 2,
        color="red",
        alpha=0.2,
    )
    ax1.add_artist(circle)
    # point = ax1.scatter(x, y, c="b", s=20, zorder=10, transform=ax2.transData)
    ax2.annotate(1, (x, y),
                 fontsize=15,
                 xytext=(4, 4),
                 textcoords='offset pixels')

    ax1.set_xlim(-180, 180)
    ax1.set_ylim(0, 90)
    ax1.set_aspect(1.)
    ax1.grid(True, zorder=0)
    ax1.set_xlabel("Azimuth in degrees", fontsize=20)
    ax1.set_ylabel("Zenith in degrees", fontsize=20)

    plt.show()
    return fig
コード例 #20
0
ファイル: survey.py プロジェクト: ste1d/skymap
    def create_axes(self,rect=111):
        """
        Create a special AxisArtist to overlay grid coordinates.

        Much of this taken from the examples here:
        http://matplotlib.org/mpl_toolkits/axes_grid/users/axisartist.html
        """

        # from curved coordinate to rectlinear coordinate.
        def tr(x, y):
            x, y = np.asarray(x), np.asarray(y)
            return self(x,y)

        # from rectlinear coordinate to curved coordinate.
        def inv_tr(x,y):
            x, y = np.asarray(x), np.asarray(y)
            return self(x,y,inverse=True)


        # Cycle the coordinates
        extreme_finder = angle_helper.ExtremeFinderCycle(20, 20)

        # Find a grid values appropriate for the coordinate.
        # The argument is a approximate number of grid lines.
        grid_locator1 = angle_helper.LocatorD(9,include_last=False)
        #grid_locator1 = angle_helper.LocatorD(8,include_last=False)
        grid_locator2 = angle_helper.LocatorD(6,include_last=False)

        # Format the values of the grid
        tick_formatter1 = self.create_tick_formatter()
        tick_formatter2 = angle_helper.FormatterDMS()

        grid_helper = GridHelperCurveLinear((tr, inv_tr),
                                            extreme_finder=extreme_finder,
                                            grid_locator1=grid_locator1,
                                            grid_locator2=grid_locator2,
                                            tick_formatter1=tick_formatter1,
                                            tick_formatter2=tick_formatter2,
        )

        fig = plt.gcf()
        if rect is None:
            # This doesn't quite work. Need to remove the existing axis...
            rect = plt.gca().get_position()
            plt.gca().axis('off')
            ax = axisartist.Axes(fig,rect,grid_helper=grid_helper)
            fig.add_axes(ax)
        else:
            ax = axisartist.Subplot(fig,rect,grid_helper=grid_helper)
            fig.add_subplot(ax)

        ## Coordinate formatter
        def format_coord(x, y):
            return 'lon=%1.4f, lat=%1.4f'%inv_tr(x,y)
        ax.format_coord = format_coord
        ax.axis['left'].major_ticklabels.set_visible(True)
        ax.axis['right'].major_ticklabels.set_visible(False)
        ax.axis['bottom'].major_ticklabels.set_visible(True)
        ax.axis['top'].major_ticklabels.set_visible(True)

        ax.set_xlabel("Right Ascension")
        ax.set_ylabel("Declination")
        #self.set_axes_limits()

        self.axisartist = ax
        return fig,ax
コード例 #21
0
ファイル: zoom.py プロジェクト: kadrlica/cartosky
    def create_axes(self, rect=111):
        """
        Create a special AxisArtist to overlay grid coordinates.

        Much of this taken from the examples here:
        http://matplotlib.org/mpl_toolkits/axes_grid/users/axisartist.html
        """

        # from curved coordinate to rectlinear coordinate.
        def tr(x, y):
            return self(x, y)

        # from rectlinear coordinate to curved coordinate.
        def inv_tr(x, y):
            return self(x, y, inverse=True)

        # Cycle the coordinates
        extreme_finder = angle_helper.ExtremeFinderCycle(20, 20)

        # Find a grid values appropriate for the coordinate.
        # The argument is a approximate number of grid lines.
        grid_locator1 = angle_helper.LocatorD(9, include_last=False)
        # grid_locator1 = angle_helper.LocatorD(8, include_last=False)
        grid_locator2 = angle_helper.LocatorD(6, include_last=False)

        # Format the values of the grid
        tick_formatter1 = self.create_tick_formatter()
        tick_formatter2 = angle_helper.FormatterDMS()

        grid_helper = GridHelperCurveLinear(
            (tr, inv_tr),
            extreme_finder=extreme_finder,
            grid_locator1=grid_locator1,
            grid_locator2=grid_locator2,
            tick_formatter1=tick_formatter1,
            tick_formatter2=tick_formatter2,
        )

        fig = plt.gcf()
        rect = self.ax.get_position()
        ax = axisartist.Axes(fig, rect, grid_helper=grid_helper, frameon=False)
        fig.add_axes(ax)

        # Coordinate formatter
        def format_coord(x, y):
            return 'lon=%1.4f, lat=%1.4f' % inv_tr(x, y)

        ax.format_coord = format_coord
        ax.axis['left'].major_ticklabels.set_visible(True)
        ax.axis['right'].major_ticklabels.set_visible(False)
        ax.axis['bottom'].major_ticklabels.set_visible(True)
        ax.axis['top'].major_ticklabels.set_visible(True)

        ax.axis['bottom'].label.set(text="Right Ascension", size=18)
        ax.axis['left'].label.set(text="Declination", size=18)
        self.aa = ax

        # Set the current axis back to the SkyAxes
        fig.sca(self.ax)

        return fig, ax
コード例 #22
0
ファイル: vis.py プロジェクト: tsmsalper/wradlib
def create_cg(st, fig=None, subplot=111):
    """ Helper function to create curvelinear grid

    The function makes use of the Matplotlib AXISARTIST namespace
    `mpl_toolkits.axisartist \
    <https://matplotlib.org/mpl_toolkits/axes_grid/users/axisartist.html>`_.

    Here are some limitations to normal Matplotlib Axes. While using the
    Matplotlib `AxesGrid Toolkit \
    <https://matplotlib.org/mpl_toolkits/axes_grid/index.html>`_
    most of the limitations can be overcome.
    See `Matplotlib AxesGrid Toolkit User’s Guide \
    <https://matplotlib.org/mpl_toolkits/axes_grid/users/index.html>`_.

    Parameters
    ----------
    st : string
        scan type, 'PPI' or 'RHI'
    fig : matplotlib Figure object
        If given, the PPI will be plotted into this figure object. Axes are
        created as needed. If None a new figure object will be created or
        current figure will be used, depending on "subplot".
    subplot : :class:`matplotlib:matplotlib.gridspec.GridSpec`, \
        matplotlib grid definition
        nrows/ncols/plotnumber, see examples section
        defaults to '111', only one subplot

    Returns
    -------
    cgax : matplotlib toolkit axisartist Axes object
        curvelinear Axes (r-theta-grid)
    caax : matplotlib Axes object (twin to cgax)
        Cartesian Axes (x-y-grid) for plotting cartesian data
    paax : matplotlib Axes object (parasite to cgax)
        The parasite axes object for plotting polar data
    """

    if st == 'RHI':
        # create transformation
        tr = Affine2D().scale(np.pi / 180, 1) + PolarAxes.PolarTransform()

        # build up curvelinear grid
        extreme_finder = ah.ExtremeFinderCycle(20, 20,
                                               lon_cycle=100,
                                               lat_cycle=None,
                                               lon_minmax=(0, np.inf),
                                               lat_minmax=(0, np.inf),
                                               )

        # locator and formatter for angular annotation
        grid_locator1 = ah.LocatorDMS(10.)
        tick_formatter1 = ah.FormatterDMS()

        # grid_helper for curvelinear grid
        grid_helper = GridHelperCurveLinear(tr,
                                            extreme_finder=extreme_finder,
                                            grid_locator1=grid_locator1,
                                            grid_locator2=None,
                                            tick_formatter1=tick_formatter1,
                                            tick_formatter2=None,
                                            )

        # try to set nice locations for range gridlines
        grid_helper.grid_finder.grid_locator2._nbins = 30.0
        grid_helper.grid_finder.grid_locator2._steps = [0, 1, 1.5,
                                                        2, 2.5, 5, 10]

    if st == 'PPI':
        # Set theta start to north
        tr_rotate = Affine2D().translate(-90, 0)
        # set theta running clockwise
        tr_scale = Affine2D().scale(-np.pi / 180, 1)
        # create transformation
        tr = tr_rotate + tr_scale + PolarAxes.PolarTransform()

        # build up curvelinear grid
        extreme_finder = ah.ExtremeFinderCycle(20, 20,
                                               lon_cycle=360,
                                               lat_cycle=None,
                                               lon_minmax=(360, 0),
                                               lat_minmax=(0, np.inf),
                                               )

        # locator and formatter for angle annotation
        locs = [i for i in np.arange(0., 359., 10.)]
        grid_locator1 = FixedLocator(locs)
        tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i))
                                              for i in locs]))

        # grid_helper for curvelinear grid
        grid_helper = GridHelperCurveLinear(tr,
                                            extreme_finder=extreme_finder,
                                            grid_locator1=grid_locator1,
                                            grid_locator2=None,
                                            tick_formatter1=tick_formatter1,
                                            tick_formatter2=None,
                                            )
        # try to set nice locations for range gridlines
        grid_helper.grid_finder.grid_locator2._nbins = 15.0
        grid_helper.grid_finder.grid_locator2._steps = [0, 1, 1.5, 2,
                                                        2.5,
                                                        5,
                                                        10]

    # if there is no figure object given
    if fig is None:
        # create new figure if there is only one subplot
        if subplot is 111:
            fig = pl.figure()
        # otherwise get current figure or create new figure
        else:
            fig = pl.gcf()

    # generate Axis
    cgax = SubplotHost(fig, subplot, grid_helper=grid_helper)

    fig.add_axes(cgax)

    # PPIs always plottetd with equal aspect
    if st == 'PPI':
        cgax.set_aspect('equal', adjustable='box')

    # get twin axis for cartesian grid
    caax = cgax.twin()
    # move axis annotation from right to left and top to bottom for
    # cartesian axis
    caax.toggle_axisline()

    # make right and top axis visible and show ticklabels (curvelinear axis)
    cgax.axis["top", "right"].set_visible(True)
    cgax.axis["top", "right"].major_ticklabels.set_visible(True)

    # make ticklabels of left and bottom axis invisible (curvelinear axis)
    cgax.axis["left", "bottom"].major_ticklabels.set_visible(False)

    # and also set tickmarklength to zero for better presentation
    # (curvelinear axis)
    cgax.axis["top", "right", "left", "bottom"].major_ticks.set_ticksize(0)

    # show theta (angles) on top and right axis
    cgax.axis["top"].get_helper().nth_coord_ticks = 0
    cgax.axis["right"].get_helper().nth_coord_ticks = 0

    # generate and add parasite axes with given transform
    paax = ParasiteAxesAuxTrans(cgax, tr, "equal")
    # note that paax.transData == tr + cgax.transData
    # Anything you draw in paax will match the ticks and grids of cgax.
    cgax.parasites.append(paax)

    return cgax, caax, paax
コード例 #23
0
ファイル: wedge.py プロジェクト: pkaf/wedgez
def cone(
        ra,
        z,
        scale=0.5,
        orientation='horizontal',
        raaxis='min',
        ralim=None,
        zlim=None,
        hms=False,
        # cosmology=None, lookbtime=False,
        plot=None,
        fig=None,
        subnum=None,
        xlabel=r"$\alpha$",
        ylabel=r"$\mathsf{redshift}$",
        **kwargs):
    """
    Make a wedge plot of RA/Dec vs redshift z, where RA/DEC are in degrees

    Parameters
    ----------
    Input data

    angle : (n, ) array
            RA in degrees
    redshift : (n, ) array

    scale: 0.5

    orientation:
        'horizontal': increasing z along +ve xaxis
        'vertical': increasing z along +ve yaxis
        angle in degrees: increasing z along the tilted axis

    raxis: 'min' | 'mid' | float
        default is 'min'
        RA value along which the cone plot is orientated horizontal
        or vertical

    ralim, zlim: list [ramin, rmax], list [zmin, zmax]
        default is taken from the lower/upper bound of the input data

    scatter: any kwargs compatible with plt.scatter

    hms: show RA labels in units of hours (if True) or degrees (if False)

    lookbtime: True/False

    plot: None
         'scatter' | 'hexbin' etc
    fig: supply figure instance
         default None

    subnum: subplot number e.g. 111, 221 etc
            default None

    xlabel: r"$\alpha$"

    ylabel: r"$\mathsf{redshift}$"

    cosmology: dict
     Uses cosmolopy package to compute look-back time
     default cosmology is {'omega_M_0': 0.3,
                           'omega_lambda_0': 0.7,
                          'h': 0.72}

    kwargs
    ------
    scatter = {'s': 4, 'marker': ','}

    Notes
    -----
        --Decorations that can be done outside the code:
             Draw grids: ax.grid(True, alpha=0.2)
             Set title: ax.set_title('Wedge plot')

        --Look-back time as twin axis to redshift not yet implemented

        --In future plan is to able to put colorbar in the plot too.
          Using cmap option.
    """

    # ------ Extents of ra and z
    if ralim:
        ramin, ramax = ralim
    else:
        ramin, ramax = ra.min(), ra.max()

    if zlim:
        zmin, zmax = zlim
    else:
        zmin, zmax = z.min(), z.max()

    # ----- Scale and Orientation of the wedge
    if orientation == 'horizontal':
        dirn = 0.
    elif orientation == 'vertical':
        dirn = 90.
    else:
        dirn = orientation

    if raaxis == 'min':
        raaxis = ramin
    elif raaxis == 'mid':
        raaxis = 0.5 * (ramin + ramax)

    # Tilt of a cone relative to minimum RA
    tr_rotate = Affine2D().translate(dirn / scale - raaxis, 0.0)

    # Scaling the opening angle
    tr_scale = Affine2D().scale(scale * np.pi / 180., 1.0)

    tr = tr_rotate + tr_scale + PolarAxes.PolarTransform()

    # ---- Grids
    if hms is True:
        grid_locator1 = angle_helper.LocatorHMS(4.0)
        tick_formatter1 = angle_helper.FormatterHMS()
    else:
        grid_locator1 = angle_helper.LocatorDMS(4.0)
        tick_formatter1 = angle_helper.FormatterDMS()

    grid_locator2 = MaxNLocator(10)

    grid_helper = GridHelperCurveLinear(tr,
                                        extremes=(ramin, ramax, zmin, zmax),
                                        grid_locator1=grid_locator1,
                                        grid_locator2=grid_locator2,
                                        tick_formatter1=tick_formatter1,
                                        tick_formatter2=None)

    # Figure properties
    if not fig:
        fig = plt.figure(figsize=(8, 7))
        subnum = 111
    ax = FloatingSubplot(fig, subnum, grid_helper=grid_helper)
    fig.add_subplot(ax)

    # adjust axis
    # Left, right, top represent z, lookbacktime, RA respectively.
    # right axes is for look-back time yet to be coded
    ax.axis["left"].set_axis_direction("bottom")

    ax.axis["right"].set_axis_direction("top")

    ax.axis["bottom"].set_visible(False)

    ax.axis["top"].set_axis_direction("bottom")
    ax.axis["top"].toggle(ticklabels=True, label=True)
    ax.axis["top"].major_ticklabels.set_axis_direction("top")
    ax.axis["top"].label.set_axis_direction("top")

    ax.axis["left"].label.set_text(ylabel)
    ax.axis["top"].label.set_text(xlabel)

    # create a parasite axes that transData in RA, z
    aux = ax.get_aux_axes(tr)
    aux.patch = ax.patch  # for aux_ax to have a clip path as in ax
    ax.patch.zorder = 0.9  # but this has a side effect that the patch is
    # drawn twice, and possibly over some other
    # artists. So, we decrease the zorder a bit to
    # prevent this.

    if plot == 'scatter':
        aux.scatter(ra, z, **kwargs)
        # plt.tight_layout()
        # plt.show()
    return ax, aux, fig
コード例 #24
0
    def curvelinear_test2(fig, gs=None, xcenter=0.0, ycenter=17.3, xwidth=1.5, ywidth=1.5,
            rot_angle=0.0, xlabel=xlabel, ylabel=ylabel, xgrid_density=8, ygrid_density=5):
        """
        polar projection, but in a rectangular box.
        """

        tr = Affine2D().translate(0,90)
        tr += Affine2D().scale(np.pi/180., 1.)
        tr += PolarAxes.PolarTransform()

        tr += Affine2D().rotate(rot_angle)  # This rotates the grid

        extreme_finder = angle_helper.ExtremeFinderCycle(10, 60,
                                                        lon_cycle = 360,
                                                        lat_cycle = None,
                                                        lon_minmax = None,
                                                        lat_minmax = (-90, np.inf),
                                                        )

        grid_locator1 = angle_helper.LocatorHMS(xgrid_density) #changes theta gridline count
        tick_formatter1 = angle_helper.FormatterHMS()
        grid_locator2 = angle_helper.LocatorDMS(ygrid_density) #changes theta gridline count
        tick_formatter2 = angle_helper.FormatterDMS()


        grid_helper = GridHelperCurveLinear(tr,
                                            extreme_finder=extreme_finder,
                                            grid_locator1=grid_locator1,
                                            grid_locator2=grid_locator2,
                                            tick_formatter1=tick_formatter1,
                                            tick_formatter2=tick_formatter2
                                            )

        # ax1 = SubplotHost(fig, rect, grid_helper=grid_helper)
        if gs is None:
            ax1 = SubplotHost(fig, 111, grid_helper=grid_helper)
        else:
            ax1 = SubplotHost(fig, gs, grid_helper=grid_helper)



        # make ticklabels of right and top axis visible.
        ax1.axis["right"].major_ticklabels.set_visible(False)
        ax1.axis["top"].major_ticklabels.set_visible(False)
        ax1.axis["bottom"].major_ticklabels.set_visible(True) #Turn off?

        # let right and bottom axis show ticklabels for 1st coordinate (angle)
        ax1.axis["right"].get_helper().nth_coord_ticks=0
        ax1.axis["bottom"].get_helper().nth_coord_ticks=0


        fig.add_subplot(ax1)

        grid_helper = ax1.get_grid_helper()

        # These move the grid
        ax1.set_xlim(xcenter-xwidth, xcenter+xwidth) # moves the origin left-right in ax1
        ax1.set_ylim(ycenter-ywidth, ycenter+ywidth) # moves the origin up-down


        if xlabel is not None: ax1.set_xlabel(xlabel)
        if ylabel is not None: ax1.set_ylabel(ylabel)
        ax1.grid(True, linestyle='-')


        return ax1,tr
コード例 #25
0
def fractional_polar_axes(f, thlim=(0, 180), rlim=(0, 1), step=(30, 0.01),
                          thlabel=r'$\alpha$', rlabel='z', ticklabels=True):
    import matplotlib.pyplot as plt

    from matplotlib.transforms import Affine2D
    from matplotlib.projections import PolarAxes
    from mpl_toolkits.axisartist import angle_helper
    from mpl_toolkits.axisartist.grid_finder import MaxNLocator
    from mpl_toolkits.axisartist.floating_axes import GridHelperCurveLinear, FloatingSubplot
    from mpl_toolkits.axisartist.grid_finder import (FixedLocator, MaxNLocator,
                                                 DictFormatter)

    """Return polar axes that adhere to desired theta (in deg) and r limits. steps for theta
    and r are really just hints for the locators. Using negative values for rlim causes
    problems for GridHelperCurveLinear for some reason"""
    th0, th1 = thlim # deg
    r0, r1 = rlim
    thstep, rstep = step

    # scale degrees to radians:
    tr_scale = Affine2D().scale(np.pi/180., 1.)
    tr = tr_scale + PolarAxes.PolarTransform()
    theta_grid_locator = angle_helper.LocatorDMS((th1-th0) // thstep)
    r_grid_locator = MaxNLocator((r1-r0) // rstep)
    theta_tick_formatter = angle_helper.FormatterDMS()
    theta_tick_formatter = None
    theta_ticks = [(0, r"$90^{\circ}$"),
                   (30, r"$120^{\circ}$"),
                   (60, r"$150^{\circ}$"),
                   (90, r"$180^{\circ}$"),
                   (120, r"$210^{\circ}$"),
                   (150, r"$270^{\circ}$"),
                   (180, r"$0^{\circ}$")]
    theta_tick_formatter = DictFormatter(dict(theta_ticks))
    grid_helper = GridHelperCurveLinear(tr,
                                        extremes=(th0, th1, r0, r1),
                                        grid_locator1=theta_grid_locator,
                                        grid_locator2=r_grid_locator,
                                        tick_formatter1=theta_tick_formatter,
                                        tick_formatter2=None)

    a = FloatingSubplot(f, 111, grid_helper=grid_helper)
    f.add_subplot(a)

    # adjust x axis (theta):
    a.axis["bottom"].set_visible(False)
    a.axis["top"].set_axis_direction("bottom") # tick direction
    a.axis["top"].toggle(ticklabels=ticklabels, label=bool(thlabel))
    a.axis["top"].major_ticklabels.set_axis_direction("top")
    a.axis["top"].label.set_axis_direction("top")

    # adjust y axis (r):
    a.axis["left"].set_axis_direction("bottom") # tick direction
    a.axis["right"].set_axis_direction("top") # tick direction
    a.axis["left"].toggle(ticklabels=ticklabels, label=bool(rlabel))

    # add labels:
    a.axis["top"].label.set_text(thlabel)
    a.axis["left"].label.set_text(rlabel)

    # create a parasite axes whose transData is theta, r:
    auxa = a.get_aux_axes(tr)
    # make aux_ax to have a clip path as in a?:
    auxa.patch = a.patch
    # this has a side effect that the patch is drawn twice, and possibly over some other
    # artists. So, we decrease the zorder a bit to prevent this:
    a.patch.zorder = -2

    # add sector lines for both dimensions:
    thticks = grid_helper.grid_info['lon_info'][0]
    rticks = grid_helper.grid_info['lat_info'][0]
    for th in thticks[1:-1]: # all but the first and last
        auxa.plot([th, th], [r0, r1], '--', c='grey', zorder=-1)
    for ri, r in enumerate(rticks):
        # plot first r line as axes border in solid black only if it isn't at r=0
        if ri == 0 and r != 0:
            ls, lw, color = 'solid', 2, 'black'
        else:
            ls, lw, color = 'dashed', 1, 'grey'
        # From http://stackoverflow.com/a/19828753/2020363
        auxa.add_artist(plt.Circle([0, 0], radius=r, ls=ls, lw=lw, color=color, fill=False,
                        transform=auxa.transData._b, zorder=-1))

    return auxa
コード例 #26
0
def curvelinear_test2(fig):
    """
    polar projection, but in a rectangular box.
    """

    # PolarAxes.PolarTransform takes radian. However, we want our coordinate
    # system in degree
    tr = Affine2D().scale(np.pi / 180., 1.) + PolarAxes.PolarTransform()

    # polar projection, which involves cycle, and also has limits in
    # its coordinates, needs a special method to find the extremes
    # (min, max of the coordinate within the view).

    # 20, 20 : number of sampling points along x, y direction
    extreme_finder = angle_helper.ExtremeFinderCycle(
        20,
        20,
        lon_cycle=360,
        lat_cycle=None,
        lon_minmax=None,
        lat_minmax=(0, np.inf),
    )

    grid_locator1 = angle_helper.LocatorDMS(12)
    # Find a grid values appropriate for the coordinate (degree,
    # minute, second).

    tick_formatter1 = angle_helper.FormatterDMS()
    # And also uses an appropriate formatter.  Note that,the
    # acceptable Locator and Formatter class is a bit different than
    # that of mpl's, and you cannot directly use mpl's Locator and
    # Formatter here (but may be possible in the future).

    grid_helper = GridHelperCurveLinear(tr,
                                        extreme_finder=extreme_finder,
                                        grid_locator1=grid_locator1,
                                        tick_formatter1=tick_formatter1)

    ax1 = SubplotHost(fig, 1, 2, 2, grid_helper=grid_helper)

    # make ticklabels of right and top axis visible.
    ax1.axis["right"].major_ticklabels.set_visible(True)
    ax1.axis["top"].major_ticklabels.set_visible(True)

    # let right axis shows ticklabels for 1st coordinate (angle)
    ax1.axis["right"].get_helper().nth_coord_ticks = 0
    # let bottom axis shows ticklabels for 2nd coordinate (radius)
    ax1.axis["bottom"].get_helper().nth_coord_ticks = 1

    fig.add_subplot(ax1)

    # A parasite axes with given transform
    ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal")
    # note that ax2.transData == tr + ax1.transData
    # Anthing you draw in ax2 will match the ticks and grids of ax1.
    ax1.parasites.append(ax2)
    intp = cbook.simple_linear_interpolation
    ax2.plot(intp(np.array([0, 30]), 50),
             intp(np.array([10., 10.]), 50),
             linewidth=2.0)

    ax1.set_aspect(1.)
    ax1.set_xlim(-5, 12)
    ax1.set_ylim(-5, 10)

    ax1.grid(True, zorder=0)
コード例 #27
0
ファイル: directionalHF.py プロジェクト: aajarven/gradu-yde
def fractional_polar_axes(f, thlim=(0, 180), rlim=(0, 1), step=(30, 0.25),
						  thlabel='theta', rlabel='r', ticklabels=True, rlabels = None, subplot=111):
	'''Return polar axes that adhere to desired theta (in deg) and r limits. steps for theta
	and r are really just hints for the locators.'''
	th0, th1 = thlim # deg
	r0, r1 = rlim
	thstep, rstep = step

	# scale degrees to radians:
	tr_scale = Affine2D().scale(np.pi/180., 1.)
	pa = PolarAxes
	tr = tr_scale + pa.PolarTransform()
	theta_grid_locator = angle_helper.LocatorDMS((th1-th0)//thstep)
	r_grid_locator = MaxNLocator((r1-r0)//rstep)
	theta_tick_formatter = angle_helper.FormatterDMS()
	if rlabels:
		rlabels = DictFormatter(rlabels)

	grid_helper = GridHelperCurveLinear(tr,
									 extremes=(th0, th1, r0, r1),
									 grid_locator1=theta_grid_locator,
									 grid_locator2=r_grid_locator,
									 tick_formatter1=theta_tick_formatter,
									 tick_formatter2=rlabels)

	a = FloatingSubplot(f, subplot, grid_helper=grid_helper)
	f.add_subplot(a)
	
	# adjust x axis (theta):
	a.axis["bottom"].set_visible(False)
	a.axis["top"].set_axis_direction("bottom") # tick direction
	a.axis["top"].toggle(ticklabels=ticklabels, label=bool(thlabel))
	a.axis["top"].major_ticklabels.set_axis_direction("top")
	a.axis["top"].label.set_axis_direction("top")
	a.axis["top"].major_ticklabels.set_pad(10)

	# adjust y axis (r):
	a.axis["left"].set_axis_direction("bottom") # tick direction
	a.axis["right"].set_axis_direction("top") # tick direction
	a.axis["left"].toggle(ticklabels=True, label=bool(rlabel))
	
	# add labels:
	a.axis["top"].label.set_text(thlabel)
	a.axis["left"].label.set_text(rlabel)
	
	# create a parasite axes whose transData is theta, r:
	auxa = a.get_aux_axes(tr)
	
	# make aux_ax to have a clip path as in a?:
	auxa.patch = a.patch 
	# this has a side effect that the patch is drawn twice, and possibly over some other
	# artists. So, we decrease the zorder a bit to prevent this:
	a.patch.zorder = -2

	# add sector lines for both dimensions:
	thticks = grid_helper.grid_info['lon_info'][0]
	rticks = grid_helper.grid_info['lat_info'][0]
	for th in thticks[1:-1]: # all but the first and last
		auxa.plot([th, th], [r0, r1], ':', c='grey', zorder=-1, lw=0.5)
		for ri, r in enumerate(rticks):
			# plot first r line as axes border in solid black only if it  isn't at r=0
			if ri == 0 and r != 0:
				ls, lw, color = 'solid', 1, 'black'
			else:
				ls, lw, color = 'dashed', 0.5, 'grey'
				# From http://stackoverflow.com/a/19828753/2020363
				auxa.add_artist(plt.Circle([0, 0], radius=r, ls=ls, lw=lw, color=color, fill=False,
							   transform=auxa.transData._b, zorder=-1))

	return auxa
コード例 #28
0
def create_cg(fig=None,
              subplot=111,
              rot=-450,
              scale=-1,
              angular_spacing=10,
              radial_spacing=10,
              latmin=0,
              lon_cycle=360):
    """ Helper function to create curvelinear grid

    The function makes use of the Matplotlib AXISARTIST namespace
    `mpl_toolkits.axisartist \
    <https://matplotlib.org/mpl_toolkits/axes_grid/users/axisartist.html>`_.

    Here are some limitations to normal Matplotlib Axes. While using the
    Matplotlib `AxesGrid Toolkit \
    <https://matplotlib.org/mpl_toolkits/axes_grid/index.html>`_
    most of the limitations can be overcome.
    See `Matplotlib AxesGrid Toolkit User’s Guide \
    <https://matplotlib.org/mpl_toolkits/axes_grid/users/index.html>`_.

    Parameters
    ----------
    fig : matplotlib Figure object
        If given, the PPI/RHI will be plotted into this figure object.
        Axes are created as needed. If None a new figure object will
        be created or current figure will be used, depending on "subplot".
    subplot : :class:`matplotlib:matplotlib.gridspec.GridSpec`, \
        matplotlib grid definition
        nrows/ncols/plotnumber, see examples section
        defaults to '111', only one subplot
    rot : float
        Rotation of the source data in degrees, defaults to -450 for PPI,
        use 0 for RHI
    scale : float
        Scale of source data, defaults to -1. for PPI, use 1 for RHI
    angular_spacing : float
        Spacing of the angular grid, defaults to 10.
    radial_spacing : float
        Spacing of the radial grid, defaults to 10.
    latmin : float
        Startvalue for radial grid, defaults to 0.
    lon_cycle : float
        Angular cycle, defaults to 360.

    Returns
    -------
    cgax : matplotlib toolkit axisartist Axes object
        curvelinear Axes (r-theta-grid)
    caax : matplotlib Axes object (twin to cgax)
        Cartesian Axes (x-y-grid) for plotting cartesian data
    paax : matplotlib Axes object (parasite to cgax)
        The parasite axes object for plotting polar data
    """
    # create transformation
    # rotate
    tr_rotate = Affine2D().translate(rot, 0)
    # scale
    tr_scale = Affine2D().scale(scale * np.pi / 180, 1)
    # polar
    tr_polar = PolarAxes.PolarTransform()

    tr = tr_rotate + tr_scale + tr_polar

    # build up curvelinear grid
    extreme_finder = ah.ExtremeFinderCycle(
        360,
        360,
        lon_cycle=lon_cycle,
        lat_cycle=None,
        lon_minmax=None,
        lat_minmax=(latmin, np.inf),
    )
    # locator and formatter for angular annotation
    grid_locator1 = ah.LocatorDMS(lon_cycle // angular_spacing)
    tick_formatter1 = ah.FormatterDMS()

    # grid_helper for curvelinear grid
    grid_helper = GridHelperCurveLinear(
        tr,
        extreme_finder=extreme_finder,
        grid_locator1=grid_locator1,
        grid_locator2=None,
        tick_formatter1=tick_formatter1,
        tick_formatter2=None,
    )

    # try to set nice locations for radial gridlines
    grid_locator2 = grid_helper.grid_finder.grid_locator2
    grid_locator2._nbins = (radial_spacing * 2 + 1) // np.sqrt(2)

    # if there is no figure object given
    if fig is None:
        # create new figure if there is only one subplot
        if subplot == 111:
            fig = pl.figure()
        # otherwise get current figure or create new figure
        else:
            fig = pl.gcf()

    # generate Axis
    cgax = SubplotHost(fig, subplot, grid_helper=grid_helper)
    fig.add_axes(cgax)

    # get twin axis for cartesian grid
    caax = cgax.twin()
    # move axis annotation from right to left and top to bottom for
    # cartesian axis
    caax.toggle_axisline()

    # make right and top axis visible and show ticklabels (curvelinear axis)
    cgax.axis["top", "right"].set_visible(True)
    cgax.axis["top", "right"].major_ticklabels.set_visible(True)

    # make ticklabels of left and bottom axis invisible (curvelinear axis)
    cgax.axis["left", "bottom"].major_ticklabels.set_visible(False)

    # and also set tickmarklength to zero for better presentation
    # (curvelinear axis)
    cgax.axis["top", "right", "left", "bottom"].major_ticks.set_ticksize(0)

    # show theta (angles) on top and right axis
    cgax.axis["top"].get_helper().nth_coord_ticks = 0
    cgax.axis["right"].get_helper().nth_coord_ticks = 0

    # generate and add parasite axes with given transform
    paax = ParasiteAxesAuxTrans(cgax, tr, "equal")
    # note that paax.transData == tr + cgax.transData
    # Anything you draw in paax will match the ticks and grids of cgax.
    cgax.parasites.append(paax)

    return cgax, caax, paax
コード例 #29
0
    def __init__(self, fig=None, max_normed_std=2.5, std_ratios=[1], \
            bias_vmin=None, bias_vmax=None, \
            normalized=True,
            cmap=plt.cm.jet, s=80, title_expected=r'expected'):
        """
    Set up Taylor diagram axes. 
    """
        self.title_polar = r'Correlation'
        self.title_xy = r'Normalized Standard Deviation'
        self.max_normed_std = max_normed_std
        self.s_min = 0
        self.std_ratios = std_ratios
        self.bias_vmin = bias_vmin
        self.bias_vmax = bias_vmax
        self.normalized = normalized
        self.cmap = cmap
        self.s = s  # marker size
        self.title_expected = title_expected

        # Define polar coordinate
        tr = PolarAxes.PolarTransform()
        extreme_finder = angle_helper.ExtremeFinderCycle(
            20,
            20,
            lon_cycle=360,
            lat_cycle=None,
            lon_minmax=None,
            lat_minmax=(0, np.inf),
        )

        grid_locator1 = angle_helper.LocatorDMS(12)

        tick_formatter1 = angle_helper.FormatterDMS()

        grid_helper = GridHelperCurveLinear(tr,
                                            extreme_finder=extreme_finder,
                                            grid_locator1=grid_locator1,
                                            tick_formatter1=tick_formatter1)

        # figure
        self.fig = fig
        if self.fig is None:
            self.fig = plt.figure()

        # setup axes
        ax = SubplotHost(self.fig, 111, grid_helper=grid_helper)
        self.ax = self.fig.add_subplot(ax)

        # set x and y axis
        self._setup_axes()

        # attach the polar axes and plot the correlation lines
        self.polar_ax = self.ax.get_aux_axes(tr)
        self.polar_ax.plot([np.pi / 2.135, np.pi / 2.135],
                           [self.s_min, self.max_normed_std * 2],
                           color='grey')
        self.polar_ax.plot([np.pi / 2.484, np.pi / 2.484],
                           [self.s_min, self.max_normed_std * 2],
                           color='grey')
        self.polar_ax.plot([np.pi / 3, np.pi / 3],
                           [self.s_min, self.max_normed_std * 2],
                           color='grey')
        self.polar_ax.plot([np.pi / 3.95, np.pi / 3.95],
                           [self.s_min, self.max_normed_std * 2],
                           color='grey')
        self.polar_ax.plot([np.pi / 6.95, np.pi / 6.95],
                           [self.s_min, self.max_normed_std * 2],
                           color='grey')

        # Add norm stddev ratio contours
        self._plot_req_cont(self.std_ratios)

        self.points = []