コード例 #1
0
    def plot(self):

        self.data, lonwrap = addcyclic(self.data, self.lons)

        # Sort latitudes and data
        lat_idx = np.argsort(self.lats)
        self.lats = self.lats[lat_idx]
        self.data = self.data[lat_idx]

        data_lon_min = min(lonwrap)
        data_lon_max = max(lonwrap)
        data_lat_min = min(self.lats)
        data_lat_max = max(self.lats)

        new_lons = np.arange(data_lon_min - 1.0, data_lon_max + 1.0, 1.0)
        new_lats = np.arange(data_lat_min - 1.0, data_lat_max + 1.0, 1.0)

        x, y = self.m(*np.meshgrid(new_lons[:], new_lats[:]))

        # Two pass interpolation to deal with the mask.
        # First pass does bilinear, the next does nearest neighbour
        # interpolation.
        # It's not clear this is working, and the problem is likely
        # solved by ensuring the right mask is used!
        data_bl = interp(self.data, lonwrap[:], self.lats[:], x, y, order=1)
        data_nn = interp(self.data, lonwrap[:], self.lats[:], x, y, order=0)

        data_bl[data_nn.mask == 1] = data_nn[data_nn.mask == 1]

        if self.parameters.has_key('color_levels'):
            self.__print_custom_color_plot(x, y, data_bl)
        else:
            self.__print_cmap_plot(x, y, data_bl)

        return self.main_render
コード例 #2
0
    def plot(self):

        self.data, lonwrap = addcyclic(self.data, self.lons)

        # Sort latitudes and data
        lat_idx = np.argsort(self.lats)
        self.lats = self.lats[lat_idx]
        self.data = self.data[lat_idx]

        data_lon_min = min(lonwrap)
        data_lon_max = max(lonwrap)
        data_lat_min = min(self.lats)
        data_lat_max = max(self.lats)

        new_lons = np.arange(data_lon_min - 1.0, data_lon_max + 1.0, 1.0)
        new_lats = np.arange(data_lat_min - 1.0, data_lat_max + 1.0, 1.0)

        x, y = self.m(*np.meshgrid(new_lons[:], new_lats[:]))

        # Two pass interpolation to deal with the mask.
        # First pass does bilinear, the next does nearest neighbour
        # interpolation.
        # It's not clear this is working, and the problem is likely
        # solved by ensuring the right mask is used!
        data_bl = interp(self.data, lonwrap[:], self.lats[:], x, y, order=1)
        data_nn = interp(self.data, lonwrap[:], self.lats[:], x, y, order=0)

        data_bl[data_nn.mask == 1] = data_nn[data_nn.mask == 1]

        if self.parameters.has_key("color_levels"):
            self.__print_custom_color_plot(x, y, data_bl)
        else:
            self.__print_cmap_plot(x, y, data_bl)

        return self.main_render
コード例 #3
0
def interpVel(p, t):
    np = len(p) / 2
    x = p[0:np]
    y = p[np:2 * np]
    u = interp(vx, X[0, :], Y[:, 0], x, y)
    v = interp(vy, X[0, :], Y[:, 0], x, y)
    return numpy.append(u, v)
コード例 #4
0
ファイル: slab_tools.py プロジェクト: spmls/tsunami_maker
    def extract_transect(self, dataout_line, data=None, data_x=None, data_y=None):
        if data is 'depth':
            data=self.depth
        elif data is 'strike':
            data=self.strike
        elif data is 'dip':
            data=self.dip
        elif data is None:
            print("Error in extract transect: need to specify input for 'data'")
        else:
            data=data

        if data_x is not None:
            data_x=data_x
        else:
            data_x=self.x
        if data_y is not None:
            data_y=data_y
        else:
            data_y=self.y

        dataout1 = interp(data, data_x, data_y, dataout_line[:,0],dataout_line[:,1], order=1)
        dataout2 = interp(data, data_x, data_y, dataout_line[:,0],dataout_line[:,1], order=0)

        for i in range(0,np.size(dataout1)):
            if dataout1[i] is np.ma.masked:
                if dataout2[i] is not np.ma.masked:
                    dataout1[i] = dataout2[i]
                else:
                    r = i

                    while dataout2[r] is np.ma.masked:
                        if r < np.size(dataout1) - 1:
                            r += 1
                    try:
                        right = dataout2[r]
                    except IndexError:
                        pass



                    l = i
                    while dataout2[l-1] is np.ma.masked:
                        l += -1
                    try:
                        left = dataout2[l-1]
                    except IndexError:
                        pass

                    dataout1[i] = np.average([right,left])

        return dataout1
コード例 #5
0
ファイル: util.py プロジェクト: nilodna/altimpy
def regrid(x, y, arr, inc_by=2):
    """Regrid a 2d array increasing its resolution."""
    ny, nx = arr.shape
    xi = np.linspace(x.min(), x.max(), inc_by * len(x))
    yi = np.linspace(y.min(), y.max(), inc_by * len(y))
    xx, yy = np.meshgrid(xi, yi)
    arr = np.ma.masked_invalid(arr)
    arr1 = bm.interp(arr, x, y, xx, yy, order=0) # nearest neighb.
    arr2 = bm.interp(arr, x, y, xx, yy, order=1) # linear interp.
    ind = np.where(arr2 == 0)                    #<<<<< check!
    try:
        arr2[ind] = arr1[ind]
    except:
        pass
    return [xi, yi, arr2]
コード例 #6
0
def generic_regrid(datain,
                   lats_in,
                   lons_in,
                   lats_out,
                   lons_out,
                   order,
                   long_second=True):
    """takes a geo gridded variable and regrids it to different grid"""
    # long_second is a flag that means the second dimension of datain is the longitude
    from mpl_toolkits import basemap
    import numpy as np
    if (not long_second):
        data_in = datain.T
    else:
        data_in = datain
    lons_tri = np.concatenate([lons_in - 360, lons_in, lons_in + 360])
    data_tri = np.concatenate([data_in, data_in, data_in], axis=1)
    lats, lons = np.meshgrid(lats_out, lons_out)
    # regrided_data = basemap.interp(data_tri, lats_in, lons_tri, lats, lons, order=order)
    regrided_data = basemap.interp(data_tri,
                                   lons_tri,
                                   lats_in,
                                   lons,
                                   lats,
                                   order=order).T
    return regrided_data
コード例 #7
0
def interpolate(data, navlon, navlat, interp=None):
    """
        Perform a spatial interpolation if required; return x_reg,y_reg,data_reg.
        data : raw data
        nalon : longitude
        navlat : latitude
        interp : if None return data with cordinates in meters, if 'basemap', return interpolated
        data using basemap from mpl_toolkits and also cordinates in meters.
        """
    e1, e2 = _e1e2(navlon, navlat)
    x1d_in = e1[0, :].cumsum() - e1[0, 0]
    y1d_in = e2[:, 0].cumsum() - e2[0, 0]
    x2d_in, y2d_in = np.meshgrid(x1d_in, y1d_in)
    # print x1d_in
    if interp is None:
        return x2d_in, y2d_in, data
    elif interp == 'basemap':  # only for rectangular grid...
        from mpl_toolkits import basemap
        x1d_reg = np.linspace(x1d_in[0], x1d_in[-1], len(x1d_in))
        y1d_reg = np.linspace(y1d_in[0], y1d_in[-1], len(y1d_in))
        x2d_reg, y2d_reg = np.meshgrid(x1d_reg, y1d_reg)
        data_reg = basemap.interp(data,
                                  x1d_in,
                                  y1d_in,
                                  x2d_reg,
                                  y2d_reg,
                                  checkbounds=False,
                                  order=1)
        return x2d_reg, y2d_reg, data_reg
    else:
        raise ValueError(
            'Your choice of interp is not available in this sript.')
コード例 #8
0
ファイル: dgriddata.py プロジェクト: bazingaedwaqrd/MODES
def extened_grid(zi,x1,y1,zoom=2):
    '''
    xinterval : X插值的间隔
    yinterval : Y 插值的间隔
    扩展网格区域zoom为扩展倍数
    '''
    #print(x1)
    nx = np.size(x1)
    ny = np.size(y1)
    x2 = np.linspace(x1.min(), x1.max(), nx * zoom)
    y2 = np.linspace(y1.min(), y1.max(), ny * zoom)
    xi,yi = np.meshgrid(x2,y2)

    #插值方法1 Zoom方法
    #from scipy import ndimage
    #z2 = ndimage.interpolation.zoom(zi[:,:], zoom)

    #插值方法2 basemap.interp方法
    from mpl_toolkits.basemap import interp
    z2 = interp(zi, x1, y1, xi, yi, checkbounds=True, masked=False, order=1)

    #插值方法3 interpolate.RectBivariateSpline 矩形网格上的样条逼近。
    # Bivariate spline approximation over a rectangular mesh
    #from scipy import interpolate
    #sp = interpolate.RectBivariateSpline(y1,x1,zi,kx=1, ky=1, s=0)
    #z2 = sp(y2,x2)

    #sp = interpolate.LSQBivariateSpline(y1,x1,zi)
    #z2 = sp(y2,x2)

    #terpolate.LSQBivariateSpline?

    print('extend shapes:=',z2.shape,xi.shape,yi.shape)
    return z2,xi,yi,x2,y2,nx*zoom,ny*zoom
コード例 #9
0
def interpolate(data,navlon,navlat,interp=None):
    """
        interpolate(data,navlon,navlat,interp=None)
        
        Perform a spatial interpolation if required; return x_reg,y_reg,data_reg.
        data : raw data
        nalon : longitude
        navlat : latitude
        interp : if None return data with cordinates in meters, if 'basemap', return interpolated 
        data using basemap from mpl_toolkits and also cordinates in meters.
    """
    e1,e2 = e1e2(navlon,navlat) # ideally we would like e1u and not e1t...
    x1d_in = e1[0,:].cumsum() - e1[0,0]
    y1d_in = e2[:,0].cumsum() - e2[0,0]
    x2d_in,y2d_in = np.meshgrid(x1d_in,y1d_in)
    # print x1d_in
    if interp is None or interp=='0':
        return x2d_in, y2d_in, data.copy()
    elif interp=='basemap': # only for rectangular grid...
        from mpl_toolkits import basemap
        x1d_reg=np.linspace(x1d_in[0],x1d_in[-1],len(x1d_in))
        y1d_reg=np.linspace(y1d_in[0],y1d_in[-1],len(y1d_in))
        x2d_reg,y2d_reg = np.meshgrid(x1d_reg,y1d_reg)
        data_reg=basemap.interp(data,x1d_in,y1d_in,x2d_reg,y2d_reg,checkbounds=False,order=3)
        return x2d_reg,y2d_reg,data_reg
コード例 #10
0
ファイル: rdata.py プロジェクト: marcelorodriguesss/FCST
def interpdata(data, lats, lons):

    '''
    Interpola dados para 1 grau
    Os dados de entrada devem ter 3 dimenões: tempo, lat, lon

    :param: data - Dados com 3 dimensões
    :type param: numpy array
    :param: lats - Latitudes a serem interpoladas
    :type param: numpy array 1d
    :param: lons - Longitudes a serem interpoladas
    :type param: numpy array 1d
    '''

    # Criando grade de 1 grau
    newlats = np.linspace(-90, 90, 181)
    newlons = np.linspace(-180, 179, 360)
    x, y = np.meshgrid(newlons, newlats)

    # Interpola dados
    newdata = np.empty((int(data.shape[0]), int(len(newlats)), int(len(newlons))))
    for i in range(0, int(data.shape[0])):
        newdata[i, :, :] = interp(data[i, :, :], lons, lats, x, y, order=1)

    return newdata, newlats, newlons
コード例 #11
0
def highResolutionGrid(lats, lons, grid, **options):
    from mpl_toolkits.basemap import interp
    from mpl_toolkits.basemap import maskoceans
    # interpolate data to higher resolution grid in order to better match
    # the builtin land/sea mask. Output looks less 'blocky' near coastlines.
    ##      rbf = Rbf(lons[0], lats[:,0], map_val, epsilon=2)       ##
    nlats = 5 * lats.shape[0]
    nlons = 5 * lats.shape[1]
    interp_lons = N.linspace(N.min(lons), N.max(lons), nlons)
    interp_lats = N.linspace(N.min(lats), N.max(lats), nlats)
    interp_lons, interp_lats = N.meshgrid(interp_lons, interp_lats)

    # interpolated high resolution data grid
    interp_grid = interp(grid, lons[0], lats[:, 0], interp_lons, interp_lats)
    ##map_val to rbf

    # interpolate land/sea mask to data grid, then mask nodes in ocean
    if options.get('mask_coastlines', True):
        interp_grid = maskoceans(interp_lons,
                                 interp_lats,
                                 interp_grid,
                                 resolution=options['shape_resolution'],
                                 grid=1.25,
                                 inlands=False)
        interp_grid[interp_grid == -999] = N.nan

    return interp_lons, interp_lats, interp_grid
コード例 #12
0
ファイル: plot_n.py プロジェクト: fspaolo/code
def regrid(lon, lat, dhdt, factor=10):
    m, n = len(lon), len(lat)
    lon2 = np.linspace(lon[0], lon[-1], m*factor)
    lat2 = np.linspace(lat[0], lat[-1], n*factor)
    xx, yy = np.meshgrid(lon2, lat2)
    dhdt2 = interp(dhdt, lon, lat, xx, yy, order=1)                          # good!!!
    return lon2, lat2, dhdt2
コード例 #13
0
def regrid(lon, lat, dhdt, factor=10):
    m, n = len(lon), len(lat)
    lon2 = np.linspace(lon[0], lon[-1], m * factor)
    lat2 = np.linspace(lat[0], lat[-1], n * factor)
    xx, yy = np.meshgrid(lon2, lat2)
    dhdt2 = interp(dhdt, lon, lat, xx, yy, order=1)  # good!!!
    return lon2, lat2, dhdt2
コード例 #14
0
ファイル: surfaceplot.py プロジェクト: slawig/bgc-ann
    def _refinement(self, lons, lats, v, refinementFactor=2):
        """
        Returns a refinement of the data

        Parameters
        ----------
        lons : numpy.ndarray
            Array of longitudes
        lats : numpy.ndarray
            Array of latitudes
        v : numpy.ndarray
            3D tracer concentration vector
        refinementFactor : int, default: 2
            Refinement factor

        Returns
        -------
        tuple [numpy.ndarray]
            Tuple with a
              - numpy array including the refined longitudes,
              - numpy array including the refined latitudes,
              - numpy array including the refined tracer concentration
        """
        xFine = np.linspace(lons[0], lons[-1],
                            lons.shape[0] * refinementFactor)
        yFine = np.linspace(lats[0], lats[-1],
                            lats.shape[0] * refinementFactor)
        lonsFine, latsFine = np.meshgrid(xFine, yFine)

        vFine = interp(v, lons, lats, lonsFine, latsFine, order=1)

        return (lonsFine, latsFine, vFine)
コード例 #15
0
def make_cross_section(data3d, x, y, z, **kwargs):
    try:
        start_point, end_point = kwargs['start_point'], kwargs['end_point']
        npoints = kwargs['npoints']
        xout = np.linspace(start_point[0], end_point[0], npoints)
        yout = np.linspace(start_point[1], end_point[1], npoints)
        return3 = True
    except KeyError:
        try:
            xout = kwargs['xout']
            yout = kwargs['yout']
            npoints = len(xout)
            return3 = False
        except KeyError:
            raise ValueError(
                'Must define either xout and yout or start_point, end_point and npoints'
            )
    section = np.empty((npoints, len(z)))
    for iz in range(len(z)):
        # note the flip of dimensions
        line = basemap.interp(data3d[:, :, iz].T, x, y, xout, yout)
        section[:, iz] = line
    if return3:
        return xout, yout, section
    else:
        return section
コード例 #16
0
ファイル: WavenumberSpectrum.py プロジェクト: ecosme38/codes
def interpolate(data,navlon,navlat,interp=None):
    """Perform a spatial interpolation if required; return x_reg,y_reg,data_reg.
    """
    e1,e2 = e1e2(navlon,navlat) # ideally we would like e1u and not e1t...
    x1d_in = e1[0,:].cumsum() - e1[0,0]
    y1d_in = e2[:,0].cumsum() - e2[0,0]
    x2d_in,y2d_in = npy.meshgrid(x1d_in,y1d_in)
    # print x1d_in
    if interp is None or interp=='0':
       return x2d_in, y2d_in, data.copy()
    elif interp=='basemap': # only for rectangular grid...
       from mpl_toolkits import basemap
       x1d_reg=npy.linspace(x1d_in[0],x1d_in[-1],len(x1d_in))
       y1d_reg=npy.linspace(y1d_in[0],y1d_in[-1],len(y1d_in))
       x2d_reg,y2d_reg = npy.meshgrid(x1d_reg,y1d_reg)
       data_reg=basemap.interp(data,x1d_in,y1d_in,x2d_reg,y2d_reg,checkbounds=False,order=1)
       return x2d_reg,y2d_reg,data_reg
    elif interp=='scipy': # only for rectangular grid...
       import scipy.interpolate
       x1d_reg=npy.linspace(x1d_in[0],x1d_in[-1],len(x1d_in))
       y1d_reg=npy.linspace(y1d_in[0],y1d_in[-1],len(y1d_in))
       x2d_reg,y2d_reg = npy.meshgrid(x1d_reg,y1d_reg)
       interp = scipy.interpolate.interp2d(x1d_in, y1d_in,data, kind='linear')
       a1d = interp(x2d_reg[0,:],y2d_reg[:,0])
       data_reg = npy.reshape(a1d,y2d_reg.shape)
       #test_plot(x2d_in,y2d_in,data)
       #test_plot(x2d_reg,y2d_reg,data_reg)
       return x2d_reg,y2d_reg,data_reg
コード例 #17
0
def interpolate(data,navlon,navlat,interp=None):
    """Perform a spatial interpolation if required; return x_reg,y_reg,data_reg.
    """
    e1,e2 = e1e2(navlon,navlat) # ideally we would like e1u and not e1t...
    x1d_in = e1[0,:].cumsum() - e1[0,0]
    y1d_in = e2[:,0].cumsum() - e2[0,0]
    x2d_in,y2d_in = npy.meshgrid(x1d_in,y1d_in)
    # print x1d_in
    if interp is None or interp=='0':
       return x2d_in, y2d_in, data.copy()
    elif interp=='basemap': # only for rectangular grid...
       from mpl_toolkits import basemap
       x1d_reg=npy.linspace(x1d_in[0],x1d_in[-1],len(x1d_in))
       y1d_reg=npy.linspace(y1d_in[0],y1d_in[-1],len(y1d_in))
       x2d_reg,y2d_reg = npy.meshgrid(x1d_reg,y1d_reg)
       data_reg=basemap.interp(data,x1d_in,y1d_in,x2d_reg,y2d_reg,checkbounds=False,order=1)
       return x2d_reg,y2d_reg,data_reg
    elif interp=='scipy': # only for rectangular grid...
       import scipy.interpolate
       x1d_reg=npy.linspace(x1d_in[0],x1d_in[-1],len(x1d_in))
       y1d_reg=npy.linspace(y1d_in[0],y1d_in[-1],len(y1d_in))
       x2d_reg,y2d_reg = npy.meshgrid(x1d_reg,y1d_reg)
       interp = scipy.interpolate.interp2d(x1d_in, y1d_in,data, kind='linear')
       a1d = interp(x2d_reg[0,:],y2d_reg[:,0])
       data_reg = npy.reshape(a1d,y2d_reg.shape)
       #test_plot(x2d_in,y2d_in,data)
       #test_plot(x2d_reg,y2d_reg,data_reg)
       return x2d_reg,y2d_reg,data_reg
コード例 #18
0
 def extend_interp(datafield):
   # add masked values at southernmost end
   southernlimitmask = ma.masked_all(len(self.olon))
   olat_ext          = np.append(-82.1,self.olat)
   dfield_ext = ma.concatenate([ma.column_stack(southernlimitmask), datafield], 0)
   # f = interp2d(self.olon, olat_ext, dfield_ext)
   # return f(self.pismlon, self.pismlat)
   return interp(dfield_ext, self.olon, olat_ext, self.pismlon, self.pismlat)
コード例 #19
0
	def interpolate(self, xout, yout, srs=None, checkbounds=False, masked=True,
					order=1):
		"""
		Interpolate grid.
		Note: masked values will be replaced with NaN values

		:param xout:
			array, X coordinates in native SRS or :param:`srs`
		:param yout:
			array, Y coordinates in native SRS or :param:`srs`
		:param srs:
			osr SpatialReference object, SRS of output coordinates
			(default: None)
		:param checkbounds:
			bool, whether or not values of xout and yout are checked
			to see that they are within the range of the grid. If True,
			points falling outside the grid are masked if :param:`masked`
			is True, else they are clipped to the boundary of the grid
			(default: False)
		:param masked:
			bool, whether or not points outside the range of the grid
			are masked
			(default: True)
		:param order:
			int, type of interpolation, 0=nearest neighbor, 1=bilinear,
			3=cubic spline
			(default: 1)

		:return:
			array, interpolated grid values
		"""
		## Check scipy.interpolate.Rbf for additional interpolation methods
		from mpl_toolkits.basemap import interp
		from mapping.geotools.coordtrans import transform_mesh_coordinates

		## xin, yin must be linearly increasing
		values = self.values
		if self.lon0 < self.lon1:
			xin = np.linspace(self.lon0, self.lon1, self.ncols)
		else:
			xin = np.linspace(self.lon1, self.lon0, self.ncols)
			values = values[:,::-1]
		if self.lat0 < self.lat1:
			yin = np.linspace(self.lat0, self.lat1, self.nrows)
		else:
			yin = np.linspace(self.lat1, self.lat0, self.nrows)
			values = values[::-1,:]

		## Transform output coordinates to lon/lat coordinates if necessary
		if srs and srs != self.srs:
			xout, yout = transform_mesh_coordinates(self.srs, WGS84, xout, yout)

		out_data = interp(values, xin, yin, xout, yout, checkbounds=checkbounds,
							masked=masked, order=order)
		if hasattr(out_data, 'mask'):
			out_data = out_data.filled(np.nan)

		return out_data
コード例 #20
0
ファイル: GriddedData.py プロジェクト: ecosme38/codes
 def __call__(self,array):
     masked = ma.is_masked(array)
     if self.method is 'basemap':
        return basemap.interp(array, self.xin, self.yin, self.xout, self.yout, checkbounds=False, masked=masked, order=1)
     elif self.method is 'scipy':
        import scipy.interpolate
        interp = scipy.interpolate.interp2d(self.xin, self.yin, array, kind='linear')
        a1d = interp(self.xout[0,:],self.yout[:,0])
        return npy.reshape(a1d,self.yout.shape)
コード例 #21
0
 def __call__(self,array):
     masked = ma.is_masked(array)
     if self.method is 'basemap':
        return basemap.interp(array, self.xin, self.yin, self.xout, self.yout, checkbounds=False, masked=masked, order=1)
     elif self.method is 'scipy':
        import scipy.interpolate
        interp = scipy.interpolate.interp2d(self.xin, self.yin, array, kind='linear')
        a1d = interp(self.xout[0,:],self.yout[:,0])
        return npy.reshape(a1d,self.yout.shape)
コード例 #22
0
ファイル: MapProjectionsFns.py プロジェクト: ahoarfrost/SAR86
def insert_monthly(var, var_target, source_nc, target_nc):
    from mpl_toolkits import basemap
    #create variable and attributes
    if var_target in target_nc.variables:
        var_target = target_nc[var_target]
    else:
        var_target = target_nc.createVariable(var_target,"f8",("lat","lon","time"))

    #set attributes as same as original
    for attr in source_nc[var].ncattrs():
        var_target.setncattr(attr, str(getattr(source_nc[var], attr)))
    #insert into projections

    print("processing ", var)
    #change resolution
    lats_source = source_nc['lat'][:]
    lons_source = source_nc['lon'][:]
    lats_fine = target_nc['lat'][:]
    lons_fine = target_nc['lon'][:]
    lons_sub, lats_sub = np.meshgrid(lons_fine, lats_fine)

    if source_nc[var].shape in [(360,720,1,12), (360, 720, 14, 12)]:
        for mo_ix, month in enumerate(target_nc['time'][:]):
            var_source = source_nc[var][:,:,0,mo_ix]
            var_fine = basemap.interp(var_source, lons_source, lats_source, lons_sub, lats_sub, order=1)
            if np.ma.is_masked(var_fine):
                var_fine = var_fine.filled(fill_value=np.nan)
            #insert into projections
            var_target[:,:,mo_ix] = var_fine

    elif source_nc[var].shape in [(12, 37, 180, 360), (12, 57, 180, 360)]:
        #need to use len(vert)-2 layer; 36 or 56
        vert_layer = len(source_nc['vert'][:])-2
        print('using vertical layer ', vert_layer, ' for ', var)
        for mo_ix, month in enumerate(target_nc['time'][:]):
            var_source = source_nc[var][mo_ix,vert_layer,:,:]
            var_fine = basemap.interp(var_source, lons_source, lats_source, lons_sub, lats_sub, order=1)
            if np.ma.is_masked(var_fine):
                var_fine = var_fine.filled(fill_value=np.nan)
            #insert into projections
            var_target[:,:,mo_ix] = var_fine

    else:
        print('shape not as expected')
コード例 #23
0
ファイル: gridbox_csvs.py プロジェクト: sweing/warming_map
def downscale_time_series(data, lats, lons, resolution=1):
    '''
    Downscale timeseries to a 1x1 lat/lon resolution for each timestep.
    Use bilinear interpolation as the default, but use nearest neighbor
    infilling for any gridcells adjacent to areas of missing data.
    '''
    if lons.max() > 200:
        data, lons = shiftgrid(180, data, lons, start=False)
    lons_fine = np.arange(-179.5, 180, resolution)
    lats_fine = np.arange(-89.5, 90, resolution)
    lons_sub, lats_sub = np.meshgrid(lons_fine, lats_fine)
    month = []
    for i in range(data.shape[0]):
        fine_bilinear = interp(data[i],
                               lons,
                               lats,
                               lons_sub,
                               lats_sub,
                               checkbounds=False,
                               masked=False,
                               order=1)
        fine_nn = interp(data[i],
                         lons,
                         lats,
                         lons_sub,
                         lats_sub,
                         checkbounds=False,
                         masked=False,
                         order=0)
        fine_bilinear = np.ma.masked_invalid(fine_bilinear)
        mask = np.ma.getmask(fine_bilinear)
        fine = np.ma.where(mask, fine_nn, fine_bilinear)
        try:
            results = np.dstack((results, fine))
        except:
            results = fine
        month.append(i)
    results = np.ma.masked_invalid(results)
    return {
        'anoms': results,
        'month': month,
        'lons': lons_fine,
        'lats': lats_fine
    }
コード例 #24
0
ファイル: MapProjectionsFns.py プロジェクト: ahoarfrost/SAR86
def insert_annual(var, var_target, source_nc, target_nc):
    from mpl_toolkits import basemap
    #create variable and attributes
    if var_target in target_nc.variables:
        var_target = target_nc[var_target]
    else:
        var_target = target_nc.createVariable(var_target,"f8",("lat","lon"))

    #set attributes as same as original
    for attr in source_nc[var].ncattrs():
        var_target.setncattr(attr, str(getattr(source_nc[var], attr)))
    #insert into projections

    print("processing ", var)
    #change resolution
    lats_source = source_nc['lat'][:]
    lons_source = source_nc['lon'][:]
    lats_fine = target_nc['lat'][:]
    lons_fine = target_nc['lon'][:]
    lons_sub, lats_sub = np.meshgrid(lons_fine, lats_fine)

    if source_nc[var].shape in [(1, 2160, 4320)]:
        var_source = source_nc[var][0,:,:]
        var_fine = var_source

    elif source_nc[var].shape in [(1, 102, 180, 360)]:
        print('using level 100 for ', var)
        #gotta use len(vert)-2 level to get surface data (centered around 5m)
        var_source = source_nc[var][0,100,:,:]
        var_fine = basemap.interp(var_source, lons_source, lats_source, lons_sub, lats_sub, order=1)

    elif source_nc[var].shape in [(360, 720)]:
        var_source = source_nc[var][:,:]
        var_fine = basemap.interp(var_source, lons_source, lats_source, lons_sub, lats_sub, order=1)

    else:
        print('shape not as expected')

    if np.ma.is_masked(var_fine):
        print("filling masked")
        var_fine = var_fine.filled(fill_value=np.nan)
        #insert into projections
    var_target[:,:] = var_fine
コード例 #25
0
    def setPtValues(self, aPt, chgLatLon=True):

        chged = False
        for varname, geoNc in self.ncDs.items():

            if chgLatLon or not self.ncData.has_key(varname):

                row, col, gridlon, gridlat = geoNc.get_row_col(
                    aPt[LON], aPt[LAT])
                aPt[varname] = geoNc.ds.variables[varname][row, col]

                if chgLatLon and not chged:
                    aPt[LON] = gridlon
                    aPt[LAT] = gridlat
                    chged = True

            else:

                rval = bm.interp(self.ncData[varname].astype(np.float),
                                 self.xGrid,
                                 self.yGrid,
                                 np.array(aPt[LON]),
                                 np.array(aPt[LAT]),
                                 checkbounds=False,
                                 masked=True,
                                 order=1)

                if np.ma.is_masked(rval):

                    rval = bm.interp(self.ncData[varname],
                                     self.xGrid,
                                     self.yGrid,
                                     np.array(aPt[LON]),
                                     np.array(aPt[LAT]),
                                     checkbounds=False,
                                     masked=True,
                                     order=0)

                    if np.ma.is_masked(rval):
                        rval = geoNc.ds.variables[varname].missing_value

                aPt[varname] = rval
コード例 #26
0
ファイル: zipped_cru.py プロジェクト: fredpiel/map_utils
def interp_CRU(path, fname, long_new, lat_new, zip=True, dtype=None):
    """
    Extracts from a CRU file, interpolates it to a non-grid point set.
    """
    from mpl_toolkits import basemap
    long_old, lat_old, data = CRU_extract(path, fname, zip, dtype)
    N_new = len(long_new)
    out_vals = zeros(N_new, dtype=float)

    for i in xrange(N_new):
        out_vals[i] = basemap.interp(data,long_old,lat_old,long_new[i],lat_new[i],order=1)
    return out_vals
コード例 #27
0
ファイル: util.py プロジェクト: nilodna/altimpy
def regrid2d(arr3d, x, y, inc_by=2):
    """Regrid 2d time series (3d array) increasing resolution."""
    nt, ny, nx = arr3d.shape
    out = np.empty((nt, inc_by * ny, inc_by * nx), 'f8')
    xi = np.linspace(x.min(), x.max(), inc_by * len(x))
    yi = np.linspace(y.min(), y.max(), inc_by * len(y))
    xx, yy = np.meshgrid(xi, yi)
    arr3d = np.ma.masked_invalid(arr3d)
    for k, field in enumerate(arr3d):
        field1 = bm.interp(field, x, y, xx, yy, order=0) # nearest neighb.
        field2 = bm.interp(field, x, y, xx, yy, order=1) # linear
        ##########################################################
        # soemthing "wierd" when the field is zero
        ind = np.where(field2 == 0) #<<<<< check!
        try:
            field2[ind] = field1[ind]
        except:
            pass
        ##########################################################
        out[k] = field2
    return [out, xi, yi]
コード例 #28
0
ファイル: resample_basemap.py プロジェクト: CCI-Tools/sandbox
def resample_slice(slice_, grid_lon, grid_lat, order=1):
    """
    Resample a single time slice of a larger xr.DataArray

    :param slice: xr.DataArray single slice
    :param grid_lon: meshgrid of longitudes for the new grid
    :param grid_lat: meshgrid of latitudes for the new grid
    :param order: Interpolation method 0 - nearest neighbour, 1 - bilinear (default), 3 - cubic spline
    :return: xr.DataArray, resampled slice
    """
    result = basemap.interp(slice_.values, slice_['lon'].data, slice_['lat'].data, grid_lon, grid_lat)
    return xr.DataArray(result)
コード例 #29
0
def BasemapInterp(tlat, tlon, slat, slon, sdata):
    lat_new = np.flipud(slat)
    sdata_new = np.flipud(sdata)

    rada_nom = interp(sdata_new,
                      slon,
                      lat_new,
                      tlon,
                      tlat,
                      checkbounds=False,
                      masked=-999.,
                      order=1)
    return rada_nom
コード例 #30
0
ファイル: plotplus.py プロジェクト: crazyapril/mpkit
 def interpolation(self, data, ip=1):
     if ip <= 1:
         return self.x, self.y, data
     else:
         nx = np.arange(self.lonmin, self.lonmax + self.res / ip,
                        self.res / ip)
         ny = np.arange(self.latmin, self.latmax + self.res / ip,
                        self.res / ip)
         newx, newy = np.meshgrid(nx, ny)
         if self.trans:
             nx, ny = self.m(newx, newy)
         ndata = interp(data, self.x, self.y, newx, newy, order=3)
         return nx, ny, ndata
コード例 #31
0
ファイル: _dgriddata.py プロジェクト: bazingaedwaqrd/MODES
def griddata_nearest(x, y, z, xi, yi):
    x = x.astype(np.float32)
    y = y.astype(np.float32)
    z = z.astype(np.float32)
    xi = xi.astype(np.float32)
    yi = yi.astype(np.float32)

    (nx,ny)=xi.shape
    xi, yi = xi.flatten(), yi.flatten()
    from scipy.interpolate import griddata
    interp = griddata((x, y), z,(xi,yi), method='nearest')#linear
    zi = np.reshape(interp(xi, yi),(nx,ny))
    zi = zi.astype(np.float32)
    return zi
コード例 #32
0
def resample_xy_grid(xyslice, oldlat, oldlon, newlat, newlon, masked=False):
    #xyslice is a data grid of dimensions (oldlat,oldlon)
    #newslice is a output data grid of dimensions (newlat,newlon)
    xout, yout = np.meshgrid(newlon, newlat)
    newslice = basemap.interp(xyslice,
                              oldlon,
                              oldlat,
                              xout,
                              yout,
                              checkbounds=False,
                              masked=masked,
                              order=1)
    xout
    return newslice
コード例 #33
0
ファイル: IONEXPlot.py プロジェクト: Jin-Whu/DiffIon
def interpolate(tecmap):
    """Interpolate TEC Map."""
    lat2 = np.linspace(tecmap.lat[0][0], tecmap.lat[-1][0],
                       tecmap.lat.shape[0] * 10)
    lon2 = np.linspace(tecmap.lon[0][0], tecmap.lon[0][-1],
                       tecmap.lon.shape[1] * 20)
    lon_inter, lat_inter = np.meshgrid(lon2, lat2)
    tecmap_inter = interp(
        tecmap.value,
        tecmap.lon[0],
        np.flipud(tecmap.lat[:, 0]),
        lon_inter,
        np.flipud(lat_inter),
        order=1)
    return lon_inter, lat_inter, tecmap_inter
コード例 #34
0
ファイル: _dgriddata.py プロジェクト: bazingaedwaqrd/MODES
def griddata_linear_rbf2(x, y, z, xi, yi,function='linear'):

    x = x.astype(np.float32)
    y = y.astype(np.float32)
    z = z.astype(np.float32)
    xi = xi.astype(np.float32)
    yi = yi.astype(np.float32)

    (nx,ny)=xi.shape
    xi, yi = xi.flatten(), yi.flatten()
    from scipy.interpolate import Rbf
    interp = Rbf(x, y, z, epsilon=1)#linear
    zi = np.reshape(interp(xi, yi),(nx,ny))
    zi = zi.astype(np.float32)
    return zi
コード例 #35
0
ファイル: grid.py プロジェクト: maestrotf/pymepps
 def _interpolate_structured(self, data, src_lat, src_lon,
                             trg_lat, trg_lon, order=0):
     """
     Interpolate structured data with basemap.interp function.
     """
     reshaped_data = data.reshape((-1, data.shape[-2], data.shape[-1]))
     remapped_data = np.zeros(
         (reshaped_data.shape[0], trg_lat.shape[-2], trg_lat.shape[-1]))
     for i in range(reshaped_data.shape[0]):
         sliced_array = reshaped_data[i, :, :]
         remapped_data[i, :, :] = interp(sliced_array.T, src_lat, src_lon,
                                         trg_lat, trg_lon, order=order)
     remapped_shape = list(data.shape[:-2])+list(remapped_data.shape[-2:])
     remapped_data = remapped_data.reshape(remapped_shape)
     remapped_data = np.atleast_2d(remapped_data)
     return remapped_data
コード例 #36
0
    def maskData(self, data, lon, lat, mlon, mlat, mask=None):
        """
        This function apply a mask to a data array

        Parameters
        ----------
        data:numpy.ndarray
        mask:numpy.ndarray or None

        Returns
        -------
            None

        """
        self.x, self.y = self.basemap(*meshgrid(mlon, mlat))
        result = interp(data, lon, lat, self.x, self.y)
        return MaskedArray(result, mask=mask)
コード例 #37
0
def do_stuff(year):
  rg_field = np.nan*np.zeros((12,len(sub_gpcc_lat),len(sub_gpcc_lon)))
  dates =[]
  for m in np.arange(0,12):
    dates.append(dt.datetime(year,m+1,1))
    # read in tamsat file
    tam_f = dir_tam+str(year)+'/'+mon_string(m+1)+'/rfe'+str(year)+'_'+mon_string(m+1)+'.v3.1.nc'
    nc_fid = Dataset(tam_f,'r')
    field = np.array(nc_fid.variables['rfe'][:]).squeeze()
    field[field<0]=np.nan
    field_units = str(nc_fid.variables['rfe'].units)
    nc_fid.close()
    rg_field[m,:,:] = basemap.interp(np.flip(field,axis=0),tam_lon,np.flip(tam_lat),regrid[0],regrid[1],order=1)

  # save new field in netcdf
  # save all data as netcdf
  nc_outfile = dir_out+'TAMSATv3.1_monthly_1d_gpcc_'+str(year)+'.nc'
  dataset = Dataset(nc_outfile,'w',format='NETCDF3_CLASSIC')
  lat = dataset.createDimension('lat', len(sub_gpcc_lat)) # create lat (dims depend on region)
  lon = dataset.createDimension('lon', len(sub_gpcc_lon)) # create lon
  time = dataset.createDimension('time', 12) # create time
  # create variables
  var_out = dataset.createVariable('rfe', 'd',('time','lat','lon'))
  latitudes = dataset.createVariable('latitude','f',('lat',))
  longitudes = dataset.createVariable('longitude','f',('lon',))
  times = dataset.createVariable('time', np.float64, ('time',))

  # Global Attributes (will need modified accordingly)
  dataset.description = 'TAMSATv3.1 monthly total rainfall regridded to GPCC 1.0d grid'
  dataset.history = 'Created ' + tt.ctime(tt.time())
  dataset.source = 'Subset by M. Young'
  # Variable Attributes
  latitudes.units = 'degrees_north'
  longitudes.units = 'degrees_east'
  var_out.units = field_units
  times.units = time_units
  times.calendar = 'gregorian'

  # Fill variables with data
  latitudes[:] = sub_gpcc_lat
  longitudes[:] = sub_gpcc_lon
  var_out[:] = rg_field
  times[:] = date2num(dates,units=time_units,calendar=times.calendar)
  dataset.close()
  return []
コード例 #38
0
def linear_interpolate_for_regrid(lon_list_in_grid, lat_list_in_grid,
                                  lon_list_out_grid, lat_list_out_grid,
                                  input_array):

    lat_length, lon_length = input_array.shape

    lon_array, lat_array = np.meshgrid(lon_list_out_grid, lat_list_out_grid)

    output_array = np.zeros(
        (lat_list_out_grid.shape[0], lon_list_out_grid.shape[0]))

    output_array = basemap.interp(input_array,
                                  lon_list_in_grid,
                                  lat_list_in_grid,
                                  lon_array,
                                  lat_array,
                                  order=1)

    return output_array
コード例 #39
0
    def interpolate_scatter1(self):
        '''
        step 1
        transform [lon1,lon2,...,lonN], [lat1,lat2,...,latN] to spatial array
        :return:
        '''

        csv = this_root + 'data\\bio_diversity\\ellis_2012_l8_dataset_2012_01_17.dbf.csv'
        data = pd.read_csv(csv)
        x = data['X']
        y = data['Y']
        val = data['N']

        # xx = np.linspace(-180,179.5,720)
        xx = np.arange(-180, 179.5, 1)
        # yy = np.linspace(-90,89.5,360)
        yy = np.arange(-90, 89.5, 1)[::-1]

        xi, yi = np.meshgrid(xx, yy)
        #
        # print xi
        # exit()
        function = 'linear'
        # ------------------------------------------------#
        # 'multiquadric': sqrt((r/self.epsilon)**2 + 1)   #
        # 'inverse': 1.0/sqrt((r/self.epsilon)**2 + 1)    #
        # 'gaussian': exp(-(r/self.epsilon)**2)           #
        # 'linear': r                                     #
        # 'cubic': r**3                                   #
        # 'quintic': r**5                                 #
        # 'thin_plate': r**2 * log(r)                     #
        # -------------------------------------------q-----#
        print 'interpolating1'
        interp = Rbf(x, y, val, function=function)
        print 'interpolating2'
        zi = interp(xi, yi)
        print 'saving'
        np.save(self.this_class_arr + 'bio_diversity_arr_1_degree_non_clip',
                zi)
        plt.imshow(zi, 'jet')
        plt.colorbar()
        plt.show()
コード例 #40
0
    def extened_grid(self, zi, x1, y1, zoom):

        # print(x1)
        nx = np.size(x1)
        ny = np.size(y1)
        x2 = np.linspace(x1.min(), x1.max(), nx * zoom)
        y2 = np.linspace(y1.min(), y1.max(), ny * zoom)
        xi, yi = np.meshgrid(x2, y2)

        from mpl_toolkits.basemap import interp
        z2 = interp(zi,
                    x1,
                    y1,
                    xi,
                    yi,
                    checkbounds=True,
                    masked=False,
                    order=1)

        return z2, xi, yi, x2, y2, nx * zoom, ny * zoom
コード例 #41
0
def linear_interpolate_for_regrid(lon_list_in_grid, lat_list_in_grid,
                                  lon_list_out_grid, lat_list_out_grid,
                                  input_array):

    time_length, z_length, lat_length, lon_length = input_array.shape

    lon_array, lat_array = np.meshgrid(lon_list_out_grid, lat_list_out_grid)

    output_array = np.zeros((time_length, z_length, lat_list_out_grid.shape[0],
                             lon_list_out_grid.shape[0]))

    for tim in range(time_length):
        for z in range(z_length):
            input_array_2d = np.squeeze(input_array[tim, z, ...])
            output_array[tim, z, ...] = basemap.interp(input_array_2d,
                                                       lon_list_in_grid,
                                                       lat_list_in_grid,
                                                       lon_array,
                                                       lat_array,
                                                       order=1)

    return output_array
コード例 #42
0
def reproject_data(location, varname, map, lonname='lon', latname='lat', step=1, xsize=100, ysize=100, filter=np.nan):
    nc = Dataset(location)
    latvar = nc.variables[latname]
    lonvar = nc.variables[lonname]
    datavar = nc.variables[varname]

    lons = lonvar[::step]
    lats = latvar[::step]
    if len(datavar.dimensions) == 2:
        data = datavar[::step, ::step]
    elif len(datavar.dimensions) == 3:
        data = datavar[0,::step, ::step]
    
    # Set masked (i.e. land) data to 0.
    # plot_surface ignores masks, and if we set it to NaN, it screws up the colour map
    # TODO: try this again with a custom colour map...
    if filter is not None:
        data[np.where(np.ma.getmask(data) == True)] = filter

    # Now fix the longitude wrapping so that all values go from -180:180
    wrapindex = None
    for i, lon in enumerate(lons):
        if lon > 180:
            lons[i] -= 360
            if wrapindex is None:
                wrapindex = i
    if wrapindex is not None: 
        lons = np.hstack((lons[wrapindex:],lons[:wrapindex]))
        data = np.hstack((data[:,wrapindex:],data[:,:wrapindex]))

    lons_proj, lats_proj = map.makegrid(xsize, ysize)
    
    data_proj = interp(data, lons, lats, lons_proj, lats_proj, checkbounds=False, masked=False, order=1)

    XX, YY = np.meshgrid(np.arange(xsize), np.arange(ysize))
    
    nc.close()
    return (lons_proj, lats_proj, XX, YY, data_proj)
コード例 #43
0
    def read(self, n=1, squeeze=True):
        dataread = self.reader.read(n, squeeze=False)
        # 5d array
        num_times = dataread.shape[4]
        num_vars = dataread.shape[3]
        num_levs = dataread.shape[2]
        #print num_times, num_vars, num_levs
        shape_out = (self._shape2d[0], self._shape2d[1], num_levs, num_vars,
                     num_times)
        dataout = np.ma.MaskedArray(np.empty(shape_out, dtype=np.float32),
                                    False)
        for ind_time in range(num_times):
            for ind_var in range(num_vars):
                for ind_lev in range(num_levs):
                    # transpose -- interp assumes y in 1st index, x in 2nd
                    fld = dataout[:, :, ind_lev, ind_var, ind_time]
                    fldmask = dataout.mask[:, :, ind_lev, ind_var, ind_time]

                    #interp = basemap.interp(dataread[:,:,ind_lev,ind_var,ind_time].T,
                    #                     self.xin, self.yin, self.x_interp.T, self.y_interp.T,
                    #                     masked=True, order=1).T

                    interp = basemap.interp(dataread[:, :, ind_lev, ind_var,
                                                     ind_time],
                                            self.yin,
                                            self.xin,
                                            self.y_interp,
                                            self.x_interp,
                                            masked=True,
                                            order=1)

                    #print np.any(interp.mask)
                    fld[...] = interp
                    fldmask[...] = interp.mask
        if squeeze:
            dataout = dataout.squeeze()
        #print np.any(dataout.mask)
        return dataout
コード例 #44
0
def interpolate_to_NEMO_lateral(interps, dataset, NEMOlon, NEMOlat, shape):
    """Interpolates arrays in interps laterally to NEMO grid.
    Assumes these arrays have already been interpolated vertically.
    Note that by this point interps should be a full array

    :arg interps: dictionary of 4D numpy arrays.
                  Key represents the variable name.
    :type interps: dictionary

    :arg dataset: LiveOcean results. Used to look up lateral grid.
    :type dataset: xarray Dataset

    :arg NEMOlon: array of NEMO boundary longitudes
    :type NEMOlon: 1D numpy array

    :arg NEMOlat: array of NEMO boundary longitudes
    :type NEMOlat: 1D numpy array

    :arg shape: the lateral shape of NEMO boundary area.
    :type shape: 2-tuple

    :returns: a dictionary, like var_arrays, but with arrays replaced with
              interpolated values
    """
    # LiveOcean grid
    lonsLO = dataset.lon_rho.values[0, :]
    latsLO = dataset.lat_rho.values[:, 0]
    # interpolate each variable
    interpl = {}
    for var in interps.keys():
        var_new = np.zeros((interps[var].shape[0], shape[0], shape[1]))
        for k in range(var_new.shape[0]):
            var_grid = interps[var][k, :, :]
            var_new[k, ...] = Basemap.interp(
                var_grid, lonsLO, latsLO, NEMOlon, NEMOlat
            )
        interpl[var] = var_new
    return interpl
コード例 #45
0
 def interpolate_data(self, data):
     #data_interp = data_process = data[self.sub_indexes[2]:self.sub_indexes[0]+1:,self.sub_indexes[3]:self.sub_indexes[1]+1:]
     if self.raw_variables['lat'][0] > self.raw_variables['lat'][
             self.lat_size - 1]:
         data_interp = data_process = data[
             self.sub_indexes['max_lat']:self.sub_indexes['min_lat'] + 1:,
             self.sub_indexes['min_lon']:self.sub_indexes['max_lon'] + 1:]
     else:
         data_interp = data_process = data[
             self.sub_indexes['min_lat']:self.sub_indexes['max_lat'] + 1:,
             self.sub_indexes['min_lon']:self.sub_indexes['max_lon'] + 1:]
     if self.data_interpolation_factor > 1:
         coordinates_xo, coordinates_yo = np.meshgrid(
             self.data_output["lon"], self.data_output['lat'])
         data_interp = interp(data_process,
                              np.sort(self.raw_variables["lon"]),
                              np.sort(self.raw_variables['lat']),
                              coordinates_xo,
                              coordinates_yo,
                              masked=True)
         #print(self.data_precision_factor)
     #print("data interp shape", data_interp.shape)
     return data_interp
コード例 #46
0
ファイル: _dgriddata.py プロジェクト: bazingaedwaqrd/MODES
def griddata_scipy_idw(x, y, z, xi, yi,function='linear'):
    '''
    scipy反向距离加权插值
    'multiquadric': sqrt((r/self.epsilon)**2 + 1)  #不能
    'inverse': 1.0/sqrt((r/self.epsilon)**2 + 1) #不能
    'gaussian': exp(-(r/self.epsilon)**2) 不能用来插值
    'linear': r  #能
    'cubic': r**3 #能
    'quintic': r**5  #效果差,勉强能
    'thin_plate': r**2 * log(r)  能可以用用来插值
    '''
    x = x.astype(np.float32)
    y = y.astype(np.float32)
    z = z.astype(np.float32)
    xi = xi.astype(np.float32)
    yi = yi.astype(np.float32)

    (nx,ny)=xi.shape
    xi, yi = xi.flatten(), yi.flatten()
    from scipy.interpolate import Rbf
    interp = Rbf(x, y, z, function=function,epsilon=2)#linear
    zi = np.reshape(interp(xi, yi),(nx,ny))
    zi = zi.astype(np.float32)
    return zi
コード例 #47
0
def interp_geodata(lon_old, lat_old, data, lon_new, lat_new, mask=None, chunk=None, view='y-x+', order=1, nan_handler=None):
    """
    Takes gridded data, interpolates it to a non-grid point set.
    """
    from mpl_toolkits import basemap
    def chunker(v,i,chunk):
        return v[i*chunk:(i+1)*chunk]
        
    lat_argmins = np.array([np.argmin(np.abs(ln-lat_old)) for ln in lat_new])
    lon_argmins = np.array([np.argmin(np.abs(ln-lon_old)) for ln in lon_new])

    if view[0]=='y':
        lat_index = 0
        lon_index = 1
        lat_dir = int(view[1]+'1')
        lon_dir = int(view[3]+'1')
    else:
        lat_index = 1
        lon_index = 0
        lat_dir = int(view[3]+'1')
        lon_dir = int(view[1]+'1')

    N_new = len(lon_new)
    out_vals = zeros(N_new, dtype=float)

    if chunk is None:
        data = data[:]
        if mask is not None:
            data = ma.MaskedArray(data, mask)
        dconv = grid_convert(data,view,'y+x+')        
        for i in xrange(N_new):
            out_vals[i] = basemap.interp(dconv,lon_old,lat_old,lon_new[i:i+1],lat_new[i:i+1],order=order)
    
        if nan_handler is not None:
            where_nan = np.where(np.isnan(out_vals))
            out_vals[where_nan] = nan_handler(lon_old, lat_old, dconv, lon_new[where_nan], lat_new[where_nan], order)
    
        
    else:
        where_inlon = [np.where((lon_argmins>=ic*chunk[lon_index])*(lon_argmins<(ic+1)*chunk[lon_index]))[0] for ic in range(len(lon_old)/chunk[lon_index])]
        where_inlat = [np.where((lat_argmins>=jc*chunk[lat_index])*(lat_argmins<(jc+1)*chunk[lat_index]))[0] for jc in range(len(lat_old)/chunk[lat_index])]
        
        # Always iterate forward in longitude and latitude.
        for ic in range(data.shape[lon_index]/chunk[lon_index]):
            for jc in range(data.shape[lat_index]/chunk[lat_index]):

                # Who is in this chunk?
                where_inchunk = intersect1d(where_inlon[ic],where_inlat[jc])
                if len(where_inchunk) > 0:

                    # Which slice in latitude? 
                    if lat_dir == 1:
                        lat_slice = slice(jc*chunk[lat_index],(jc+1)*chunk[lat_index],None)
                    else:
                        lat_slice = slice(len(lat_old)-(jc+1)*chunk[lat_index],len(lat_old)-jc*chunk[lat_index],None)

                    # Which slice in longitude?
                    if lon_dir == 1:
                        lon_slice = slice(ic*chunk[lon_index],(ic+1)*chunk[lon_index],None)
                    else:
                        lon_slice = slice(len(lon_old)-(ic+1)*chunk[lon_index],len(lon_old)-ic*chunk[lon_index],None)

                    # Combine longitude and latitude slices in correct order
                    dslice = [None,None]
                    dslice[lat_index] = lat_slice
                    dslice[lon_index] = lon_slice
                    dslice = tuple(dslice)

                    dchunk = data[dslice]
                    if mask is not None:
                        mchunk = mask[dslice]
                        dchunk = ma.MaskedArray(dchunk, mchunk)

                    latchunk = chunker(lat_old,jc,chunk[lat_index])                
                    lonchunk = chunker(lon_old,ic,chunk[lon_index])

                    dchunk_conv = grid_convert(dchunk,view,'y+x+')

                    # for index in where_inchunk:
                    out_vals[where_inchunk] = basemap.interp(dchunk_conv, lonchunk, latchunk, lon_new[where_inchunk], lat_new[where_inchunk], order=order)
                    
                    if nan_handler is not None:
                        where_nan = np.where(np.isnan(out_vals[where_inchunk]))
                        out_vals[where_inchunk][where_nan] = nan_handler(lonchunk, latchunk, dchunk_conv, lon_new[where_inchunk][where_nan], lat_new[where_inchunk][where_nan], order)                

    return out_vals
コード例 #48
0
ファイル: plotting.py プロジェクト: jibbals/OMI_regridding
def createmap(data, lats, lons, make_edges=False, GC_shift=True,
              vmin=None, vmax=None, latlon=True,
              region=__GLOBALREGION__, aus=False, linear=False,
              clabel=None, colorbar=True, cbarfmt=None, cbarxtickrot=None,
              ticks=None, cbarorient='bottom',
              xticklabels=None,
              set_bad=None, set_under=None, set_over=None,
              pname=None,title=None,suptitle=None, smoothed=False,
              cmapname=None):
    '''
        Pass in data[lat,lon], lats[lat], lons[lon]
        arguments:
            set_bad='blue' #should mask nans as blue
            GC_shift=True #will shift plot half a square left and down
        Returns map, cs, cb
    '''

    # Create a basemap map with region as inputted
    if aus: region=__AUSREGION__
    if __VERBOSE__:
        print("createmap called over %s (S,W,N,E)"%str(region))
        #print("Data %s, %d lats and %d lons"%(str(data.shape),len(lats), len(lons)))

    # First reduce data,lats,lons to the desired region (should save plotting time)
    regionplus=np.array(region) + np.array([-5,-10,5,10]) # add a little padding so edges aren't lost
    lati,loni=util.lat_lon_range(lats,lons,regionplus)
    data=data[lati,:]
    data=data[:,loni]
    lats=lats[lati]
    #print(lons)
    #print(loni)

    lons=lons[loni]


    lllat=region[0]; urlat=region[2]; lllon=region[1]; urlon=region[3]
    m=Basemap(llcrnrlat=lllat, urcrnrlat=urlat, llcrnrlon=lllon, urcrnrlon=urlon,
              resolution='i', projection='merc')

    # plt.colormesh arguments will be added to dictionary
    pcmeshargs={}

    if not linear:
        if __VERBOSE__:
            print('removing %d negative datapoints in createmap'%np.nansum(data<0))
        # ignore warnings of NaN comparison
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore",category =RuntimeWarning)
            data[data<=0] = np.NaN
        pcmeshargs['norm']=LogNorm()

    # Set vmin and vmax if necessary
    if vmin is None:
        vmin=1.05*np.nanmin(data)
    if vmax is None:
        vmax=0.95*np.nanmax(data)

    ## basemap pcolormesh uses data edges
    ##
    lats_e,lons_e=lats,lons
    lats_m,lons_m=lats,lons
    if make_edges:
        if __VERBOSE__: print("Making edges from lat/lon mids")
        nlat,nlon=len(lats), len(lons)
        lats_e=regularbounds(lats)
        lons_e=regularbounds(lons)
        assert nlat == len(lats_e)-1, "regularbounds failed: %d -> %d"%(nlat, len(lats_e))
        assert nlon == len(lons_e)-1, "regularbounds failed: %d -> %d"%(nlon, len(lons_e))
        ## midpoints, derive simply from edges
        lons_m=(lats_e[0:-1] + lats_e[1:])/2.0
        lats_m=(lons_e[0:-1] + lons_e[1:])/2.0
    elif GC_shift: # non edge-based grids need to be shifted left and down by half a box
        latres=lats[3]-lats[2]
        lonres=lons[3]-lons[2]
        lats=lats-latres/2.0
        lons=lons-lonres/2.0
        lats[lats < -89.9] = -89.9
        lats[lats > 89.9]  =  89.9
        lats_e,lons_e=lats,lons
        lats_m,lons_m=lats,lons

    ## interpolate for smoothed output if desired
    ##
    if smoothed:
        factor=5
        if __VERBOSE__: print("Smoothing data, by factor of %d"%factor)
        # 'increase' resolution
        nlats = factor*data.shape[0]
        nlons = factor*data.shape[1]
        lonsi = np.linspace(lons_m[0],lons[-1],nlons)
        latsi = np.linspace(lats_m[0],lats[-1],nlats)

        # also increase resolution of our edge lats/lons
        lats_e=regularbounds(latsi);
        lons_e=regularbounds(lonsi)
        lonsi, latsi = np.meshgrid(lonsi, latsi)
        # Smoothe data to increased resolution
        data = interp(data,lons,lats,lonsi,latsi)

    # Make edges into 2D meshed grid
    mlons_e,mlats_e=np.meshgrid(lons_e,lats_e)
    #x_e,y_e=m(lons_e,lats_e)

    errmsg="pcolormesh likes edges for lat/lon (array: %s, lats:%s)"%(str(np.shape(data)),str(np.shape(mlats_e)))
    if __VERBOSE__:
        print(errmsg)

    if cmapname is None:
        cmapname = matplotlib.rcParams['image.cmap']

    cmap=plt.cm.cmap_d[cmapname]
    cmap.set_under(cmap(0.0))
    cmap.set_over(cmap(1.0))


    if set_bad is not None:
        cmap.set_bad(set_bad,alpha=0.0)

    pcmeshargs.update({'vmin':vmin, 'vmax':vmax, 'clim':(vmin, vmax),
                'latlon':latlon, 'cmap':cmap, })


    #force nan into any pixel with nan results, so color is not plotted there...
    mdata=np.ma.masked_invalid(data) # mask non-finite elements
    #mdata=data # masking occasionally throws up all over your face

    if __VERBOSE__:
        shapes=tuple([ str(np.shape(a)) for a in [mlats_e, mlons_e, mdata, mdata.mask] ])
        print("lats: %s, lons: %s, data: %s, mask: %s"%shapes)

    #for arr in mlons_e,mlats_e,mdata:
    #    print(np.shape(arr))
    cs=m.pcolormesh(mlons_e, mlats_e, mdata, **pcmeshargs)
    # colour limits for contour mesh
    if set_over is not None:
        cs.cmap.set_over(set_over)
    if set_under is not None:
        cs.cmap.set_under(set_under)
    cs.set_clim(vmin,vmax)


    # draw coastline and equator(no latlon labels)
    m.drawcoastlines()
    m.drawparallels([0],labels=[0,0,0,0])

    # add titles and cbar label
    if title is not None:
        plt.title(title)
    if suptitle is not None:
        plt.suptitle(suptitle)
    cb=None
    if colorbar:
        cbargs={'format':cbarfmt, 'ticks':ticks,
                'size':'5%', 'pad':'1%', 'extend':'both'}
        cb=m.colorbar(cs, cbarorient, **cbargs)
        if xticklabels is not None:
            cb.ax.set_xticklabels(xticklabels)

        if clabel is not None:
            cb.set_label(clabel)
        if cbarxtickrot is not None:
            cb.ax.set_xticklabels(cb.ax.get_xticklabels(), rotation=cbarxtickrot)

    # if a plot name is given, save and close figure
    if pname is not None:
        plt.savefig(pname)
        print("Saved "+pname)
        plt.close()
        return

    # if no colorbar is wanted then don't return one (can be set externally)
    return m, cs, cb
コード例 #49
0
ファイル: run.1dg.jr.py プロジェクト: marcelorodriguesss/FCST
    obs_aux, obs_lons = shiftgrid(180., obs_aux, obs_lons_360, start=False)
    print 'Shapes:', obs_aux.shape
    print 'lats:', obs_lats
    print 'lons:', obs_lons

    print u"\n === INTERPOLACAO ==="

    ### Interpolação para 1 grau ###
    # Nova grade de 1 grau
    newlats = np.linspace(-90, 90, 181)
    newlons = np.linspace(-180, 179, 360)
    x, y = np.meshgrid(newlons, newlats)

    # Interpola previsão
    for i in range(0, int(fcst_aux.shape[0])):
        fcst = interp(fcst_aux[i, :, :], fcst_lons, fcst_lats, x, y, order=1)
    fcst = np.expand_dims(fcst, axis=0)

    #print fcst.shape
    #exit()
    # Interpola hindcast
    hind = np.zeros((int(hind_aux.shape[0]), int(len(newlats)), int(len(newlons))))
    for i in range(0, int(hind_aux.shape[0])):
        hind[i, :, :] = interp(hind_aux[i, :, :], hind_lons, hind_lats, x, y, order=1)

    # Interpola obs
    obs = np.zeros((int(obs_aux.shape[0]), int(len(newlats)), int(len(newlons))))
    for i in range(0, int(obs_aux.shape[0])):
        obs[i, :, :] = interp(obs_aux[i, :, :], obs_lons, obs_lats, x, y, order=1)

    print '\n ... FCST ...',  fcst.shape
コード例 #50
0
# get arthern accumulation from bedmap 2
accumulation = ncbm2.variables['accum'][:]

# get others from albmap
xalb = ncalb.variables['x'][:]
yalb = ncalb.variables['y'][:]
#lat  = ncalb.variables['topg'][:]
precip = ncalb.variables['precipitation'][:]
artm   = ncalb.variables['air_temp'][:]

xgrid, ygrid = np.meshgrid(xalb,yalb)
# adjust bedm2 to centered x,y, see bedmap2 readme file
xbm2 -= x0_bm2
ybm2 -= x0_bm2

thkbm2 = np.asarray((interp(thk, xbm2, ybm2, xgrid, ygrid )))
topgbm2 = np.asarray((interp(topg, xbm2, ybm2, xgrid, ygrid )))
maskbm2 = np.asarray((interp(mask, xbm2, ybm2, xgrid, ygrid )))
usurfbm2 = np.asarray((interp(usurf, xbm2, ybm2, xgrid, ygrid )))
thkbm2[thkbm2 > 10000.] = 0.
topgbm2[topgbm2 > 10000.] = -9999
velbm2 = np.asarray((interp(vel, xbm2, ybm2, xgrid, ygrid )))
accumbm2 = np.asarray((interp(accumulation, xbm2, ybm2, xgrid, ygrid )))

### add some difference field to compare albmap and bedma2 topg and thk
if compare_bm2_alb:

  ncmsk  = ncalb.createVariable( 'mask','float32',('t','y','x') )
  ncusurf  = ncalb.createVariable( 'usurf','float32',('t','y','x') )
  ncthkold = ncalb.createVariable( 'thk_alb','float32',('t','y','x') )
  nctopgold = ncalb.createVariable( 'topg_alb','float32',('t','y','x') )
コード例 #51
0
ファイル: lic_demo.py プロジェクト: matplotlib/basemap
# H*wind data from http://www.aoml.noaa.gov/hrd/data_sub/wind.html
ncfile = NetCDFFile('rita.nc')
udat = ncfile.variables['sfc_u'][0,:,:]
vdat = ncfile.variables['sfc_v'][0,:,:]
lons1 = ncfile.variables['longitude'][:]
lats1 = ncfile.variables['latitude'][:]
lat0 = lats1[len(lats1)/2]; lon0 = lons1[len(lons1)/2]
lons, lats = np.meshgrid(lons1,lats1)
ncfile.close()

# downsample to finer grid for nicer looking plot.
nlats = 2*udat.shape[0]; nlons = 2*udat.shape[1]
lons = np.linspace(lons1[0],lons1[-1],nlons)
lats = np.linspace(lats1[0],lats1[-1],nlats)
lons, lats = np.meshgrid(lons, lats)
udat = interp(udat,lons1,lats1,lons,lats,order=3)
vdat = interp(vdat,lons1,lats1,lons,lats,order=3)


fig = plt.figure(figsize=(8,8))
m = Basemap(projection='cyl',llcrnrlat=lats1[0],llcrnrlon=lons1[0],urcrnrlat=lats1[-1],urcrnrlon=lons1[-1],resolution='i')
# pass texture, kernel and data to LIC function from vectorplot.
kernellen=31
texture = np.random.rand(udat.shape[0],udat.shape[1]).astype(np.float32)
kernel = np.sin(np.arange(kernellen)*np.pi/kernellen).astype(np.float32)
image = lic_internal.line_integral_convolution(udat.astype(np.float32),\
        vdat.astype(np.float32), texture, kernel)
# plot the resulting image.
im = m.imshow(image,plt.cm.gist_stern)
m.drawcoastlines()
m.drawmeridians(np.arange(-120,-60,2),labels=[0,0,0,1])
コード例 #52
0
freeboard = freeboard[::-1]  # flip y-dim
thickness = thickness[::-1]
thickness_err = thickness_err[::-1]
ind = np.where((freeboard == nodata) | (thickness == nodata))
freeboard[ind] = np.nan
thickness[ind] = np.nan
thickness_err[thickness_err==nodata] = np.nan

# grid coords in polar stere
xx, yy = np.meshgrid(lon, lat)
xx, yy = ap.ll2xy(xx, yy, units='m')
xx_bm, yy_bm = np.meshgrid(x_bm, y_bm)
xx_mask, yy_mask = np.meshgrid(x_mask, y_mask)

# regrid the error to match resolutions
thickness_err1 = interp(thickness_err, x_err, y_err, xx_bm, yy_bm, order=1)
thickness_err2 = interp(thickness_err, x_err, y_err, xx_bm, yy_bm, order=0)
thickness_err1[np.isnan(thickness_err1)] = thickness_err2[np.isnan(thickness_err1)]
thickness_err = thickness_err1

# mask ice shelves 
mask_bm = interp(mask, x_mask, y_mask, xx_bm, yy_bm, order=0)
freeboard[mask_bm!=4] = np.nan
thickness[mask_bm!=4] = np.nan
thickness_err[mask_bm!=4] = np.nan

# account for Mean Dynamic Topography: H - MDT
# average MDT around Antarctica = -1.4 m
freeboard -= mean_dynamic_topo

# calculate density, and error
コード例 #53
0
def main():
    startTime = time.time()
    """Define the start and end date you want data extracted for:"""
    startYear=2009
    startMonth=10
    endYear=2012
    endMonth=12
    maxTries=3
    delay=10
    firstIteration=True
    lastIteration=False
    createFigure=False
    figureNumber=0
    USENETCDF4=True    # if false then use NETCDF3_CLASSIC


    """Name of output file to be created"""
    outputFile="NS8KM_obsSST_%s_to_%s.nc"%(startYear,endYear)
    if os.path.exists(outputFile): os.remove(outputFile)

    """Read the grid info from the grid file"""
    filename="/Users/trondkr/Projects/is4dvar/Grid/nordsjoen_8km_grid_hmax20m_v3.nc"
    mask_rho, lon_rho,lat_rho,grid_h = getGrid(filename)

    """Calculate the x,y grid coordinates"""
    (Mp,Lp)=lon_rho.shape
    X=np.arange(0,Mp,1)
    Y=np.arange(0,Lp,1)

    roms_Xgrid,roms_Ygrid=np.meshgrid(Y,X)

    """CoRTAD time is days since 1980/12/31 12:00:00"""
    mytime=getCortad.getCORTADtime()
    refDate=datetime.datetime(1981,12,31,12,0,0)

    """Have to convert the day of observation to the relative time used by ROMS
    which is 1948/1/1:00:00:00"""
    refDateROMS=datetime.datetime(1948,1,1,0,0,0)
    delta=refDate-refDateROMS
    daysSince1948to1980=delta.days

    """Find the start and end indexes to extract"""
    foundStart=False; foundEnd=False; startIndex=-9; endIndex=-9
    for index in xrange(len(mytime)):
        currentDate = refDateROMS + datetime.timedelta(days=float(mytime[index])+daysSince1948to1980)
        if foundStart is False:
            if currentDate.year==startYear:
                if currentDate.month==startMonth:
                    foundStart=True
                    startIndex=index
                    print "\n-----------------------------------------------"
                    print "Start date %s at index %s"%(currentDate,startIndex)

        if foundEnd is False:
            if currentDate.year==endYear:
                if currentDate.month==endMonth:
                    foundEnd=True
                    endIndex=index
                    print "FIXME : HARDCODING LAST INDEX !!!!!!!!!!!!!!!!!\n\n\n"
                    endIndex=1616
                    currentDate = refDateROMS + datetime.timedelta(days=float(mytime[endIndex])+daysSince1948to1980)
                    print "FIXME : HARDCODING LAST INDEX !!!!!!!!!!!!!!!!!\n\n\n"

                    print "End date %s at index %s"%(currentDate,endIndex)
    times=[i for i in range(startIndex,endIndex,1)]
    print "Created array of %s time-steps to iterate and extract data from"%(len(times))
    print "-----------------------------------------------\n"

    """Get the lomgitude-latitudes of the combination of tiles"""
    longitude, latitude, lonSST, latSST, indexes = getCortad.extractCoRTADLongLat(maxTries,
                                                                        delay,
                                                                        lon_rho.min(),
                                                                        lon_rho.max(),
                                                                        lat_rho.min(),
                                                                        lat_rho.max())
    indexes=np.asarray(indexes,dtype=np.int32)
    latitude  = np.flipud(latitude[indexes[3]:indexes[2]])
    longitude = longitude[indexes[0]:indexes[1]]

    """Loop over all times and store to file or make map"""
    polygon_data = getPolygon(lonSST[indexes[3]:indexes[2],indexes[0]:indexes[1]],
                              latSST[indexes[3]:indexes[2],indexes[0]:indexes[1]],
                              lon_rho,lat_rho)
    survey_time=[]

    for t in xrange(len(times)):
        
        """Open the files and check that NOAA is online"""
        cdf = getCortad.openCoRTAD(maxTries,delay)
        currentDate=refDateROMS + datetime.timedelta(days=int(mytime[times[t]])+daysSince1948to1980)

        
        """ Get the data for the current time"""
        filledSST = getCortad.extractCORTADSST("North Sea",times[t],cdf,indexes)

        """Interpolate the original values to the grid. This is the data that will be saved to file"""

        SSTi = mp.interp(np.flipud(filledSST),longitude,latitude,
                             lon_rho,lat_rho,checkbounds=False,masked=True,order=1)

        SSTi = np.where(SSTi < -0.5, -0.5, SSTi)

        SSTi = SSTi*mask_rho

        igood=np.nonzero(SSTi)
        numberOfobs=len(SSTi[igood])

        obs_lon=lon_rho[igood]
        obs_lat=lat_rho[igood]
        obs_value=SSTi[igood]
        obs_Xgrid=roms_Xgrid[igood]
        obs_Ygrid=roms_Ygrid[igood]
        Nobs=numberOfobs
        survey_time.append(int(mytime[times[t]])+daysSince1948to1980)
       
        obs_time=[]
        for ot in xrange(numberOfobs):
            obs_time.append(int(mytime[times[t]])+daysSince1948to1980)
            if ot==0:
                print refDateROMS + datetime.timedelta(days=int(mytime[times[t]])+daysSince1948to1980), int(mytime[times[t]])+daysSince1948to1980

        print "Found %s observations for %s"%(numberOfobs, currentDate)

        """Create map where the colored data shows the interpolated values and the
            grey colored data are the original data"""
        """Define the max and minimim area to crate map for (not used to create obs file)"""
        lat_start=43; lat_end=71.5; lon_start=-20; lon_end=35

        if createFigure is True:
            makeMap(figureNumber,lon_start,lon_end,lat_start,lat_end,filename,SSTi,lon_rho,lat_rho,polygon_data,currentDate,
                        filledSST,lonSST[indexes[3]:indexes[2],indexes[0]:indexes[1]],
                                  latSST[indexes[3]:indexes[2],indexes[0]:indexes[1]])
            figureNumber+=1

        """ Finished, now cleanup and make sure everything are arrays"""
        obs_time=np.asarray(obs_time)


        """Finally write the results to file"""

        """Temp variables not used until lastIteration is set to True, but required for function call"""
        obs_flag = 6; is3d = 1; survey =0; Nstate = 7
        if firstIteration is True:
            print "Writing data of TYPE: %s to file (6=Temperature)"%(obs_flag)

        unos = np.ones(len(obs_value))
        obs_type = obs_flag*unos
        obs_error = unos   # error eqaul one scale later
        obs_Zgrid = 0*unos
        obs_depth = 35*unos #If positive has to be the sigma level, if negative depth in meters
        obs_variance=np.asarray(np.ones(Nstate))


        print "Min and max of SST to file: %s - %s"%(obs_value.min(),obs_value.max())


        writeObsfile.writeData(outputFile,obs_lat,obs_lon,obs_value,Nobs,survey_time,obs_time,obs_Xgrid,obs_Ygrid,
                                   firstIteration,lastIteration,
                                   obs_flag,obs_type,obs_error,obs_Zgrid,obs_depth,obs_variance,
                                   survey,is3d,Nstate,USENETCDF4)
        firstIteration=False
        """Close the opendap files"""
        cdf.close();
    

    """Cleanup and write final dimensions and variables"""
    lastIteration=True
    """ some extra variables """

    obs_flag = 6       # for temperature data
    is3d = 1
    survey=len(survey_time)
    survey_time=np.asarray(survey_time)
    survey_time=survey_time.flatten()
    Nstate = 7;

    writeObsfile.writeData(outputFile,obs_lat,obs_lon,obs_value,Nobs,survey_time,obs_time,obs_Xgrid,obs_Ygrid,
                               firstIteration,lastIteration,
                               obs_flag,obs_type,obs_error,obs_Zgrid,obs_depth,obs_variance,
                               survey,is3d,Nstate,USENETCDF4)

    endTime=time.time()
    print "\n--------------------------------------------------------------"
    print "Program ended successfully after %s seconds"%(endTime-startTime)
    print "\n--------------------------------------------------------------\n"
        analysis_variable_array = ensmemanal.variables[analysis_variable][:, :, :]

        # Print message to user

        print "Interpolating variable %s from horizontal resolution within %s to horizontal resolution of %s ..." % (
            analysis_variable,
            hybridanal_file,
            ensmemanal_file,
        )

        # Compute local variable

        analysis_variable_array = interp(
            hybrid_variable_array,
            hybrid_variable_xcoord,
            hybrid_variable_ycoord,
            ensmem_variable_xcoord,
            ensmem_variable_ycoord,
            order=3,
        )

        # Define local variable

        analysis_variable_2d = analysis_variable_array

        # Perform necessary tasks on file

        analysis_variable_2d = interpanal.createVariable(
            analysis_variable,
            ensmemanal.variables[analysis_variable].dtype,
            (analysis_variable_strname_tdim, analysis_variable_strname_ydim, analysis_variable_strname_xdim),
        )
コード例 #55
0
        # print myt2max.shape, myt2m.shape, myt2min.shape

        newlats = np.linspace(-90, 90, 181)
        newlons = np.linspace(-180, 179, 360)
        x, y = np.meshgrid(newlons, newlats)

        tmax = np.zeros((20, 3, 181, 360))
        tmax[:] = np.nan
        tmean = np.copy(tmax)
        tmin = np.copy(tmax)

        print ("--- INTERPOLANDO OS DADOS ---")

        for mem in range(20):
            for lead in range(3):
                tmax[mem, lead, :, :] = interp(myt2max[mem, lead, :, :], lons, lats, x, y, order=1)
                tmean[mem, lead, :, :] = interp(myt2m[mem, lead, :, :], lons, lats, x, y, order=1)
                tmin[mem, lead, :, :] = interp(myt2min[mem, lead, :, :], lons, lats, x, y, order=1)

        tmax = np.expand_dims(tmax, axis=0)
        tmean = np.expand_dims(tmean, axis=0)
        tmin = np.expand_dims(tmin, axis=0)

        # print tmax.shape
        # mydatatmax = np.swapaxes(tmax, 2, 1)
        # mydatatmean = np.swapaxes(tmean, 2, 1)
        # mydatatmin = np.swapaxes(tmin, 2, 1)

        fileout = "io/echam46/hind8110/{1}/monthly/temp/" "temp_monthly_echam46_hind8110_fcst_{0}_{1}_{2}.nc".format(
            year_aux, ini_mon_eng[j].lower(), name_season[j].lower()
        )
コード例 #56
0
def main():
    startTime = time.time()
    """Define the start and end date you want data extracted for:"""
    startDate=date(2013,12,2)
    endDate=date(2014,12,31)
    firstIteration=True
    lastIteration=False
    createFigure=False
    figureNumber=0
    USENETCDF4=True    # if false then use NETCDF3_CLASSIC


    """Name of output file to be created"""
    outputFile="NS8KM_AVHRR_obsSST_%s_to_%s.nc"%(startDate.year,endDate.year)
    if os.path.exists(outputFile): os.remove(outputFile)

    """Read the grid info from the grid file"""
    filename="/Users/trondkr/Projects/is4dvar/Grid/nordsjoen_8km_grid_hmax20m_v3.nc"
    mask_rho, lon_rho,lat_rho,grid_h = getGrid(filename)

    """Calculate the x,y grid coordinates"""
    (Mp,Lp)=lon_rho.shape
    X=np.arange(0,Mp,1)
    Y=np.arange(0,Lp,1)

    roms_Xgrid,roms_Ygrid=np.meshgrid(Y,X)

    """AVHRR time is days since 1978/1/1 00:00:00"""
    refDate=datetime.datetime(1978,1,1,0,0,0)

    """Have to convert the day of observation to the relative time used by ROMS
    which is 1948/1/1:00:00:00"""
    refDateROMS=datetime.datetime(1948,1,1,0,0,0)
    delta=refDate-refDateROMS
    daysSince1948to1978=delta.days

    """Get the longitude-latitudes of the AVHRR files"""
    longitude, latitude, lonSST, latSST, indexes = getAVHRR.extractAVHRRLongLat(lon_rho.min(),
                                                                        lon_rho.max(),
                                                                        lat_rho.min(),
                                                                        lat_rho.max(),
                                                                        startDate)
    latitude  = latitude[indexes[2]:indexes[3]]
    longitude = longitude[indexes[0]:indexes[1]]
    
    """Loop over all times and store to file or make map"""
    polygon_data = getPolygon(lonSST[indexes[2]:indexes[3],indexes[0]:indexes[1]],
                              latSST[indexes[2]:indexes[3],indexes[0]:indexes[1]],
                              lon_rho,lat_rho)
    survey_time=[]
    for currentDate in daterange(startDate, endDate):

        print "\n-----\nCurrent date", currentDate
        """Open the files and check that NOAA is online"""
        currentTime, sst,longitude = getAVHRR.openAVHRR(currentDate,indexes)
        currentDate=refDateROMS + datetime.timedelta(days=currentTime+daysSince1948to1978)
        
        """Interpolate the original values to the grid. This is the data that will be saved to file"""
        SSTi = mp.interp(sst,longitude,latitude,
                             lon_rho,lat_rho,checkbounds=False,masked=True,order=1)

        SSTi = np.where(SSTi < -0.5, -0.5, SSTi)
        print "Mean SST %s"%(np.ma.mean(SSTi))

        SSTi = SSTi*mask_rho

        igood=np.nonzero(SSTi)
        numberOfobs=len(SSTi[igood])

        obs_lon=lon_rho[igood]
        obs_lat=lat_rho[igood]
        obs_value=SSTi[igood]
        obs_Xgrid=roms_Xgrid[igood]
        obs_Ygrid=roms_Ygrid[igood]
        Nobs=numberOfobs
        survey_time.append(currentTime+daysSince1948to1978)
       
        obs_time=[]
        for ot in xrange(numberOfobs):
            obs_time.append(currentTime+daysSince1948to1978)
            if ot==0:
                print "Date to file:", refDateROMS + datetime.timedelta(days=currentTime+daysSince1948to1978),currentTime+daysSince1948to1978

        print "Found %s observations for %s"%(numberOfobs, currentDate)

        """Create map where the colored data shows the interpolated values and the
            grey colored data are the original data"""
        """Define the max and minimim area to crate map for (not used to create obs file)"""
        lat_start=43; lat_end=71.5; lon_start=-20; lon_end=35

        if createFigure is True:
            makeMap(figureNumber,lon_start,lon_end,lat_start,lat_end,filename,SSTi,lon_rho,lat_rho,polygon_data,currentDate,
                        sst,lonSST[indexes[2]:indexes[3],indexes[0]:indexes[1]],
                                  latSST[indexes[2]:indexes[3],indexes[0]:indexes[1]])
            figureNumber+=1

        """ Finished, now cleanup and make sure everything are arrays"""
        obs_time=np.asarray(obs_time)


        """Finally write the results to file"""

        """Temp variables not used until lastIteration is set to True, but required for function call"""
        obs_flag = 6; is3d = 1; survey =0; Nstate = 7
        if firstIteration is True:
            print "Writing data of TYPE: %s to file (6=Temperature)"%(obs_flag)

        unos = np.ones(len(obs_value))
        obs_type = obs_flag*unos
        obs_error = unos   # error eqaul one scale later
        obs_Zgrid = 0*unos
        obs_depth = 35*unos #If positive has to be the sigma level, if negative depth in meters
        obs_variance=np.asarray(np.ones(Nstate))


        print "Min and max of SST to file: %s - %s"%(obs_value.min(),obs_value.max())


        writeObsfile.writeData(outputFile,obs_lat,obs_lon,obs_value,Nobs,survey_time,obs_time,obs_Xgrid,obs_Ygrid,
                                   firstIteration,lastIteration,
                                   obs_flag,obs_type,obs_error,obs_Zgrid,obs_depth,obs_variance,
                                   survey,is3d,Nstate,USENETCDF4)
        firstIteration=False
       

    """Cleanup and write final dimensions and variables"""
    lastIteration=True
    """ some extra variables """

    obs_flag = 6       # for temperature data
    is3d = 1
    survey=len(survey_time)
    survey_time=np.asarray(survey_time)
    survey_time=survey_time.flatten()
    Nstate = 7;

    writeObsfile.writeData(outputFile,obs_lat,obs_lon,obs_value,Nobs,survey_time,obs_time,obs_Xgrid,obs_Ygrid,
                               firstIteration,lastIteration,
                               obs_flag,obs_type,obs_error,obs_Zgrid,obs_depth,obs_variance,
                               survey,is3d,Nstate,USENETCDF4)

    endTime=time.time()
    print "\n--------------------------------------------------------------"
    print "Program ended successfully after %s seconds"%(endTime-startTime)
    print "\n--------------------------------------------------------------\n"
コード例 #57
0
def mapdap(
    varname = 'hr24_prcp',
    bbox = '-180,-90,180,90',
    url = 'http://opendap.bom.gov.au:8080/thredds/dodsC/PASAP/atmos_latest.nc',
    timeindex = 'Default',
    imgwidth = 256,
    imgheight = 256,
    request = 'GetMap',
    time = 'Default',
    save_local_img = False,
    colorrange = (-4,4),
    palette = 'RdYlGn',
    colorbounds = 'Default',
    style = 'grid',
    ncolors = 10,
    mask = -999,
    plot_mask = True,
    mask_varname = 'mask',
    mask_value = 1.0
    ):
    """ Using Basemap, create a contour plot using some dap available data 
   
        Data is assumed to have dimensions [time,lat,lon] 
            TODO -- deal with other shapes
            TODO -- determine the dimension ordering using CF convention

        varname -- name of variable in opendap file
        bbox -- lonmin,latmin,lonmax,latmax for plot
        url -- OPEnDAP url
        timeindex -- time index to plot
        imgwidth,imgheight -- size of png image to return
        request -- 'GetMap','GetLegend','GetFullFigure'
        time -- time vale to plot. Assumes a particular format."%Y-%m-%dT%H:%M:%S"
        mask -- mask out these values
        if plot_mask is True, mask_varname and mask_value must be given
    
    """
    transparent = True
    lonmin,latmin,lonmax,latmax = tuple([float(a) for a in bbox.rsplit(',')])
   
    # It's not clear there is any point in this. Pydap doesn't actually
    # download data until you subscript 
    
    if url not in cache:
        dset = open_url(url)
    else:
        dset = cache[url]
    
    # Get the correct time.
    time_var = dset['time']
    time_units = time_var.attributes['units']
    available_times = np.array(time_var[:])
    
    

    # TODO there is a potential conflict here between time and timeindex.
    # On the one hand we want to allow using the actual time value.
    # On the other hand we want to make it easy to get a time index
    # without knowing the value.
    timestep=0
    if timeindex == 'Default':
        timestep=0
    else:
        timestep=int(timeindex)
    if time != 'Default':
        dtime = datetime.datetime.strptime(time, "%Y-%m-%dT%H:%M:%S" )
        reftime = date2num(dtime,time_units)
        timestep = np.where(available_times >= reftime)[0].min()

    # TODO Get only the section of the field we need to plot
    # TODO Determine lat/lon box indices and only download this slice

    # TODO Set default range (the below does not work)
    #colorrange = np.min(var),np.max(var)
    
    lat = dset['lat'][:]
    lon = dset['lon'][:]
    
    # CHANGED
    var = dset[varname][timestep,:,:]
 
    #xcoords = lonmin,lonmax
    #xcoords,lon,var = transform_lons(xcoords,lon,var)
 
    # TODO
    # Needs mre thought - the idea here is to only grab a slice of the data
    # Need to grab a slightly larger slice of data so that tiling works.
    #lat_idx = (lat > latmin) & (lat < latmax)
    #lon_idx = (lon > lonmin) & (lon < lonmax)
    #lat = dset['lat'][lat_idx]
    #lon = dset['lon'][lon_idx]
    #latdx1 = np.where(lat_idx)[0].min()
    #latdx2 = np.where(lat_idx)[0].max()
    #londx1 = np.where(lon_idx)[0].min()
    #londx2 = np.where(lon_idx)[0].max()
    #var = var[latdx1:latdx2+1,londx1:londx2+1]
    #var = dset[varname][timestep,latdx1:latdx2+1,londx1:londx2+1]

    # todo clean up this logic
    if 'mask' in dset.keys():
        if plot_mask:
            maskvar = dset['mask'][timestep,:,:]
            #maskvar = dset['mask'][timestep,latdx1:latdx2+1,londx1:londx2+1]
            varm = np.ma.masked_array(var,mask=maskvar)
            mask = varm.mask 
    else:
        varm = np.ma.masked_array(var,mask=np.isinf(var))

    xcoords = lonmin,lonmax
    # Call the trans_coords function to ensure that basemap is asked to
    # plot something sensible.
    xcoords,lon,varm = transform_lons(xcoords,lon,varm)
    lonmin,lonmax = xcoords
    varnc = dset[varname]

    try:
        var_units = varnc.attributes['units']
    except KeyError:
       var_units = '' 


    
    # Plot the data
    # For the basemap drawing we can't go outside the range of coordinates
    # WMS requires us to give an empty (transparent) image for these spurious lats
    
    # uc = upper corner, lc = lower corner
    bmapuclon=lonmax
    bmaplclon=lonmin
    bmapuclat=min(90,latmax)
    bmaplclat=max(-90,latmin)
    if bmaplclat==90:
        bmaplclat = 89.0
    if bmapuclat==-90:
        bmapuclat = -89.0

    # TODO set figsize etc here  
    fig = mpl.figure.Figure()
    canvas = FigureCanvas(fig)
    
    ax = fig.add_axes((0,0,1,1),frameon=False,axisbg='k',alpha=0,visible=False)
    m = Basemap(projection='cyl',resolution='c',urcrnrlon=bmapuclon,
        urcrnrlat=bmapuclat,llcrnrlon=bmaplclon,llcrnrlat=bmaplclat,
        suppress_ticks=True,fix_aspect=False,ax=ax)

    DPI=100.0

    # Convert the latitude extents to Basemap coordinates
    bmaplatmin,bmaplonmin = m(latmin,lonmin)
    bmaplatmax,bmaplonmax = m(latmax,lonmax)
    lon_offset1 = abs(bmaplclon - bmaplonmin)
    lat_offset1 = abs(bmaplclat - bmaplatmin)
    lon_offset2 = abs(bmapuclon - bmaplonmax)
    lat_offset2 = abs(bmapuclat - bmaplatmax)
    lon_normstart = lon_offset1 / abs(bmaplonmax - bmaplonmin)
    lat_normstart = lat_offset1 / abs(bmaplatmax - bmaplatmin)
    ax_xfrac = abs(bmapuclon - bmaplclon)/abs(bmaplonmax - bmaplonmin)
    ax_yfrac = abs(bmapuclat - bmaplclat)/abs(bmaplatmax - bmaplatmin)

    # Set plot_coords, the plot boundaries. If this is a regular WMS request,
    # the plot must fill the figure, with whitespace for invalid regions.
    # If it's a full figure, we need to make sure there is space for the legend
    # and also for the text.
    if request == 'GetFullFigure':
        coords = lonmin,latmin,lonmax,latmax
        plot_coords = figurePlotDims(imgheight,imgwidth,coords)
    else:
        plot_coords = (lon_normstart,lat_normstart,ax_xfrac,ax_yfrac)

    m = Basemap(projection='cyl',resolution='c',urcrnrlon=bmapuclon,
        urcrnrlat=bmapuclat,llcrnrlon=bmaplclon,llcrnrlat=bmaplclat,
        suppress_ticks=True,fix_aspect=False,ax=ax)

    ax = fig.add_axes(plot_coords,frameon=False,axisbg='k')

    m.ax = ax
    varm,lonwrap = addcyclic(varm,lon)
    x,y = m(*np.meshgrid(lonwrap[:],lat[:]))

    """ To plot custom colors
    rgb_cmap = mpl.colors.ListedColormap([  
            (0.0,0.0,0.0),
            (0.25,0.25,0.25),
            (0.3,0.25,0.25),
            (0.5,0.5,0.5),
            (0.6,0.5,0.5),
            (0.75,0.75,0.75),
            (0.75,0.85,0.75),
            (1.0,1.0,1.0) ],name='rgbcm')
    default_color_bounds = [-1,-0.75,-0.5,-0.25,0.0,0.25,0.5,0.75,1.0]
    default_norm = mpl.colors.BoundaryNorm(default_color_bounds, rgb_cmap.N)
    m.contourf(x,y,var,cmap=rgb_cmap,norm=default_norm)
    contours = m.contour(x,y,var,cmap=rgb_cmap,norm=default_norm)
    contours.clabel(colors='k')
    """
    colormap = mpl.cm.get_cmap(palette)
    # colormap = cmap_discretize(colormap,ncolors)
    # if colorbounds = 'Default':
    # colorbounds = list(np.arange(colorrange[0],colorrange[1]+increment,increment))
    # else:
    #    colorbounds = list(np.arange(colorrange[0],colorrange[1]+increment,increment))
    #    Do some checks on the size of the list, and fix if we can
    #    pass

    if style == 'contour':
        # Interpolate to a finer resolution
        # TODO: make this sensitive to the chosen domain
        increment = float(colorrange[1]-colorrange[0]) / float(ncolors-2)
        colorbounds = list(np.arange(colorrange[0],colorrange[1]+increment,increment))
        
        
        # CHANGED
        colormap = cmap_discretize(colormap,ncolors)
        
        colvs =[-999]+colorbounds+[999]
        lat_idx = np.argsort(lat)
        lat = lat[lat_idx]
        varm = varm[lat_idx,:]

        data_lonmin = min(lonwrap)
        data_lonmax = max(lonwrap)
        data_latmin = min(lat)
        data_latmax = max(lat)

        new_lons = np.arange(data_lonmin-1.0,data_lonmax+1.0,1.0)
        new_lats = np.arange(data_latmin-1.0,data_latmax+1.0,1.0)
        newx,newy = m(*np.meshgrid(new_lons[:],new_lats[:]))
        x = newx
        y = newy
        
        # Two pass interpolation to deal with the mask.
        # The first pass does a bilinear, the next pass does a nearest neighbour to keep the mask
        # These steps slow down the plotting significantly
        # It's not clear this is working, and the problem is likely solved by
        # ensuring the right mask is used!
        varm_bl = interp(varm, lonwrap[:], lat[:], newx, newy,order=1)
        varm_nn = interp(varm, lonwrap[:], lat[:], newx, newy,order=0)
        varm = varm_bl
        varm[varm_nn.mask == 1] = varm_nn[varm_nn.mask == 1]

        # contourf has an extent keyword (x0,x1,y0,y1)
        # return "mapdap\n"
        # STUCK it gets stuck here (in apache)        
        main_render = m.contourf(x,y,varm[:,:],colorbounds,extend='both',cmap=colormap,ax=ax)
        
        contours = m.contour(x,y,varm,colorbounds,colors='k',ax=ax)
        contours.clabel(colors='k',rightside_up=True,fmt='%1.1f',inline=True)
        
        
        
    elif style == 'grid':
        main_render = m.pcolormesh(x,y,varm[:,:],vmin=colorrange[0],vmax=colorrange[1],
            cmap=colormap,ax=ax)
    elif style == 'grid_threshold':
        increment = float(colorrange[1]-colorrange[0]) / float(ncolors)
        colorbounds = list(np.arange(colorrange[0],colorrange[1]+increment,increment))
        colornorm = mpl.colors.BoundaryNorm(colorbounds,colormap.N)
        main_render = m.pcolor(x,y,varm[:,:],vmin=colorrange[0],vmax=colorrange[1],
            cmap=colormap,ax=ax,norm=colornorm)
    else:
        main_render = m.pcolormesh(x,y,varm[:,:],vmin=colorrange[0],vmax=colorrange[1],
            cmap=colormap,ax=ax)


    fig.set_dpi(DPI)
    fig.set_size_inches(imgwidth/DPI,imgheight/DPI)

    title_font_size = 9
    tick_font_size = 8
    if request == 'GetFullFigure':
        # Default - draw 5 meridians and 5 parallels
        n_merid = 5
        n_para = 5

        # base depends on zoom
        mint = (lonmax - lonmin)/float(n_merid)
        base = mint
        meridians = [lonmin + i*mint for i in range(n_merid)]
        meridians = [ int(base * round( merid / base)) for merid in meridians]
        
        # Some sensible defaults for debugging
        #meridians = [45,90,135,180,-135,-90,-45]

        pint = int((latmax - latmin)/float(n_para))
        base = pint
        parallels = [latmin + i*pint for i in range(1,n_para+1)] 
        parallels = [ int(base * round( para / base)) for para in parallels]
        #parallels = [-60,-40,-20,0,20,40,60]
        #parallels = [((parallel + 180.) % 360.) - 180. for parallel in parallels]
        m.drawcoastlines(ax=ax)
        
        m.drawmeridians(meridians,labels=[0,1,0,1],fmt='%3.1f',fontsize=tick_font_size)
        m.drawparallels(parallels,labels=[1,0,0,0],fmt='%3.1f',fontsize=tick_font_size)
        m.drawparallels([0],linewidth=1,dashes=[1,0],labels=[0,1,1,1],fontsize=tick_font_size)
        titlex,titley = (0.05,0.98)
        
        # CHANGED 
        # STUCK getting an error somewhere in this function
        # title = get_pasap_plot_title(dset,varname=varname,timestep=timestep)
        title = "We're getting errors in the get title function"
        fig.text(titlex,titley,title,va='top',fontsize=title_font_size)
   
    colorbar_font_size = 8
    if request == 'GetLegendGraphic':
        # Currently we make the plot, and then if the legend is asked for
        # we use the plot as the basis for the legend. This is not optimal.
        # Instead we should be making the legend manually. However we need
        # to set up more variables, and ensure there is a sensible min and max.
        # See the plot_custom_colors code above
        fig = mpl.figure.Figure(figsize=(64/DPI,256/DPI))
        canvas = FigureCanvas(fig)
        # make some axes
        cax = fig.add_axes([0,0.1,0.2,0.8],axisbg='k')
        # put a legend in the axes
        
        
        cbar = fig.colorbar(main_render,cax=cax,extend='both',format='%1.1f')
        cbar.set_label(var_units,fontsize=colorbar_font_size)
        for t in cbar.ax.get_yticklabels():
            t.set_fontsize(colorbar_font_size)
        # i.e. you don't need to plot the figure...
        #fig.colorbar(filled_contours,cax=cax,norm=colornorm,boundaries=colvs,values=colvs,
        #   ticks=colorbounds,spacing='proportional')
    elif request == 'GetFullFigure':
        # Add the legend to the figure itself.
        # Figure layout parameters
        # plot_coords = tuple with (xi,yi,dx,dy)
        # legend_coords = tuple with (xi,yi,dx,dy) as per mpl convention
        # First change the plot coordinates so that they do not cover the whole image
        legend_coords = (0.8,0.1,0.02,plot_coords[3])
        cax = fig.add_axes(legend_coords,axisbg='k')
        cbar = fig.colorbar(main_render,cax=cax,extend='both')
        for t in cbar.ax.get_yticklabels():
            t.set_fontsize(colorbar_font_size)
        cbar.set_label(var_units,fontsize=colorbar_font_size)
        transparent=False
        # Experimenting here with custom color map and ticks. Assigning everything manually
        # (e.g. ticks=[-2,-1,0,1,2]) is easy. Doing it in an automated way given a range is
        # hard...
        #fig.colorbar(filled_contours,cax=cax,boundaries=colvs,ticks=colorbounds)
        #,norm=colornorm,#boundaries=colvs,values=colvs,        #extend='both')
           
    imgdata = StringIO.StringIO()
    fig.savefig(imgdata,format='png',transparent=transparent)
    
    if save_local_img:
        fig.savefig('map_plot_wms_output.png',format='png')
        return

    if url not in cache:
        cache[url] = dset

    value = imgdata.getvalue()

    #imgdata.close()
    fig = None
    
    
    return value
コード例 #58
0
cbounds = list(np.arange(crange[0],crange[1] + increment, increment ))

colvs = [-999]+cbounds+[999]
        
# Sort latitudes and data
lat_idx = np.argsort(lats)
lats = lats[lat_idx]
data = data[lat_idx]
        
data_lon_min = min(lonwrap)
data_lon_max = max(lonwrap)
data_lat_min = min(lats)
data_lat_max = max(lats)
        
new_lons = np.arange(data_lon_min - 1.0, data_lon_max + 1.0, 1.0)
new_lats = np.arange(data_lat_min - 1.0, data_lat_max + 1.0, 1.0)
        
x,y = m(*np.meshgrid(new_lons[:], new_lats[:]))

data_bl = interp(data,lonwrap[:],lats[:],x,y,order=1)
data_nn = interp(data,lonwrap[:],lats[:],x,y,order=0)
        
data_bl[data_nn.mask == 1] = data_nn[data_nn.mask == 1]
#m.contourf(x,y,data_bl[:,:],cbounds,cmap=cmap,extend='both')
print cbounds
col = ('g', '#FFFF33','k','#330066','#6633FF')
m.contourf(x,y,data_bl[:,:],levels=cbounds,colors=col, extend = 'both' )
m.contour(x,y,data_bl,cbounds,colors='k')
            
m.drawcoastlines()
fig.savefig("color.png", format="png")