コード例 #1
0
ファイル: ui.py プロジェクト: nessessary/autoxd
def weekday_candlestick(ohlc_data, ax, fmt='%b %d', freq=7, **kwargs):
    """ Wrapper function for matplotlib.finance.candlestick_ohlc
        that artificially spaces data to avoid gaps from weekends 
    去除非交易时间的空隙
    fmt: 日期格式
    freq: 日期显示的间隔
    """
    freq = int(freq)
    
    # Convert data to numpy array
    ohlc_data_arr = np.array(ohlc_data)
    ohlc_data_arr2 = np.hstack(
        [np.arange(ohlc_data_arr[:,0].size)[:,np.newaxis], ohlc_data_arr[:,1:]])
    ndays = ohlc_data_arr2[:,0]  # array([0, 1, 2, ... n-2, n-1, n])

    # Convert matplotlib date numbers to strings based on `fmt`
    dates = mdates.num2date(ohlc_data_arr[:,0])
    date_strings = []
    for date in dates:
        date_strings.append(date.strftime(fmt))

    # Plot candlestick chart
    mpf.candlestick_ohlc(ax, ohlc_data_arr2, **kwargs)

    # Format x axis
    ax.set_xticks(ndays[::freq])
    ax.set_xticklabels(date_strings[::freq], rotation=45, ha='right')
    ax.set_xlim(ndays.min(), ndays.max())
コード例 #2
0
def main():
    days = readstkData(daylinefilespath, stock_b_code, startdate, enddate)

    # 日期从dateframe指数下降
    daysreshape = days.reset_index()
    # 转换浮点数
    daysreshape['DateTime'] = mdates.date2num(daysreshape['DateTime'].astype(
        dt.date))
    # 整理数据,为了展示K线的阴线和阳线使用matplotlib的蜡烛图
    daysreshape.drop('Volume', axis=1, inplace=True)
    daysreshape = daysreshape.reindex(
        columns=['DateTime', 'Open', 'High', 'Low', 'Close'])

    Av1 = movingaverage(daysreshape.Close.values, MA1)
    Av2 = movingaverage(daysreshape.Close.values, MA2)
    SP = len(daysreshape.DateTime.values[MA2 - 1:])
    fig = plt.figure(facecolor='#07000d', figsize=(15, 10))

    ax1 = plt.subplot2grid((6, 4), (1, 0),
                           rowspan=4,
                           colspan=4,
                           axisbg='#07000d')
    candlestick_ohlc(ax1,
                     daysreshape.values[-SP:],
                     width=.6,
                     colorup='#ff1717',
                     colordown='#53c156')
    Label1 = str(MA1) + ' SMA'
    Label2 = str(MA2) + ' SMA'

    ax1.plot(daysreshape.DateTime.values[-SP:],
             Av1[-SP:],
             '#e1edf9',
             label=Label1,
             linewidth=1.5)
    ax1.plot(daysreshape.DateTime.values[-SP:],
             Av2[-SP:],
             '#4ee6fd',
             label=Label2,
             linewidth=1.5)
    ax1.grid(True, color='w')
    ax1.xaxis.set_major_locator(mticker.MaxNLocator(10))
    ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
    ax1.yaxis.label.set_color("w")
    ax1.spines['bottom'].set_color("#5998ff")
    ax1.spines['top'].set_color("#5998ff")
    ax1.spines['left'].set_color("#5998ff")
    ax1.spines['right'].set_color("#5998ff")
    ax1.tick_params(axis='y', colors='w')
    plt.gca().yaxis.set_major_locator(mticker.MaxNLocator(prune='upper'))
    ax1.tick_params(axis='x', colors='w')
    plt.ylabel('Stock price and Volume')
    plt.show()
コード例 #3
0
ファイル: visualizer.py プロジェクト: wkghd1223/graduate
    def prepare(self, chart_data):
        # 캔버스를 초기화하고 4개의 차트를 그릴 준비
        self.fig, self.axes = plt.subplots(nrows=4,
                                           ncols=1,
                                           facecolor='w',
                                           sharex=True)
        for ax in self.axes:
            # 보기 어려운 과학적 표기 비활성화
            ax.get_xaxis().get_major_formatter().set_scientific(False)
            ax.get_yaxis().get_major_formatter().set_scientific(False)
            # 차트 1. 일봉 차트
            self.axes[0].set_ylabel('Env.')  # y 축 레이블 표시
            #거래량 가시화
            x = np.arange(len(chart_data))
            volume = np.array(chart_data)[:, -1].tolist()
            self.axes[0].bar(x, volume, color='b', alpha=0.3)

            #OHLC = open high low close
            ax = self.axes[0].twinx()
            ohlc = np.hstack((x.reshape(-1, 1), np.array(chart_data)[:, 1:-1]))
            candlestick_ohlc(ax, ohlc, colorup='r', colordown='b')
コード例 #4
0
    rate_increase_in_vol.append(df.iloc[i]['Volume']-df.iloc[i-1]['Volume'])
    rate_increase_in_close.append(df.iloc[i]['Close']-df.iloc[i-1]['Close'])
    i+=1
df['Increase_in_vol']=rate_increase_in_vol
df['Increase_in_close']=rate_increase_in_close
df['Increase_in_vol'].plot()
df['Increase_in_close'].plot()

df_ohlc= df['Close'].resample('10D').ohlc()
df_volume=df['Volume'].resample('10D').sum()
df_ohlc.reset_index(inplace=True)
df_ohlc['Date']=df_ohlc['Date'].map(mdates.date2num)
ax1=plt.subplot2grid((6,1), (0,0), rowspan=5, colspan=1)
ax2=plt.subplot2grid((6,1), (5,0), rowspan=1, colspan=1 , sharex=ax1)
ax1.xaxis_date()
candlestick_ohlc(ax1,df_ohlc.values, width=2, colorup='g')
ax2.fill_between(df_volume.index.map(mdates.date2num),df_volume.values,0)
#
#
df3=df
df3.fillna(0, inplace=True)
y_df=df3[['Close','Volume']]
col_y=y_df.columns
y_df=df3[['Close','Volume']]
y_df_mod=y_df.drop(['Close','Volume'],axis=1)
y_df_mod.column
Drop_cols=col_y
Drop_cols=Drop_cols.tolist()
Drop_cols.append('Date')
X_df=df3.drop(Drop_cols,axis=1)
X_df.columns
コード例 #5
0
ema60 = df.close.ewm(span=60).mean()   # ① 종가의 12주 지수 이동평균
ema130 = df.close.ewm(span=130).mean() # ② 종가의 12주 지수 이동평균
macd = ema60 - ema130                  # ③ MACD선
signal = macd.ewm(span=45).mean()      # ④ 신호선(MACD의 9주 지수 이동평균)
macdhist = macd - signal               # ⑤ MACD 히스토그램

df = df.assign(ema130=ema130, ema60=ema60, macd=macd, signal=signal,
    macdhist=macdhist).dropna() 
df['number'] = df.index.map(mdates.date2num)  # ⑥
ohlc = df[['number','open','high','low','close']]

plt.figure(figsize=(9, 7))
p1 = plt.subplot(2, 1, 1)
plt.title('Triple Screen Trading - First Screen (아이에스동서)')
plt.grid(True)
candlestick_ohlc(p1, ohlc.values, width=.6, colorup='red', 
    colordown='blue')  # ⑦
p1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))
plt.plot(df.number, df['ema130'], color='c', label='EMA130')
plt.legend(loc='best')

p2 = plt.subplot(2, 1, 2)
plt.grid(True)
p2.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))
plt.bar(df.number, df['macdhist'], color='m', label='MACD-Hist')
plt.plot(df.number, df['macd'], color='b', label='MACD')
plt.plot(df.number, df['signal'], 'g--', label='MACD-Signal')
plt.legend(loc='best')
plt.show()
コード例 #6
0
quotes = [(1312323, 18.00, 190, 100, 99, 5454545)]
# print(np.random.randint((10, 50, 2)))

dates = np.array([])
volumns = np.array([])

for item in quotes:
    dates = np.append(dates, item[0])
    volumns = np.append(volumns, item[5])

left, width = 0.1, 0.8

rect_vol = [left, 0.1, width, 0.26]
rect_main = [left, 0.4, width, 0.5]

fig = plt.figure()

ax_vol = fig.add_axes(rect_vol)
ax_vol.fill_between(dates, volumns, color='y')
ax_vol.xaxis_date()
plt.setp(ax_vol.get_xticklabels(), rotation=30, horizontalalignment='right')

ax_main = fig.add_axes(rect_main)
ax_main.axes.get_xaxis().set_visible(False)
# 绘制股票K线图
candlestick_ohlc(ax_main, quotes, width=0.6, colorup='r', colordown='g')

ax_main.set_title('Stock INTC Price and Volumn')

plt.show()
コード例 #7
0
def main():
    days = get_data('000001.SZ', start_date, '2020-06-30')
    data = days.reset_index()
    data['trade_date'] = mdates.date2num(data['trade_date'])

    data.drop(['ts_code', 'change', 'pct_chg', 'vol', 'amount', 'pre_close'],
              axis=1,
              inplace=True)
    data = data.reindex(columns=['trade_date', 'open', 'high', 'low', 'close'])
    '''
    data.drop(['ts_code', 'change', 'pct_chg', 'amount', 'pre_close'], axis=1, inplace=True)
    # data = data.reindex(columns=['Date', 'Open', 'High', 'Low', 'Close','Volume'])
    show_func(data.head())
    '''
    Av1 = talib.MA(data.close.values, MA1)
    Av2 = talib.MA(data.close.values, MA2)
    # Av1 = movingaverage(data.close.values, MA1)
    # Av2 = movingaverage(data.close.values, MA2)
    SP = len(data.trade_date.values[MA2 - 1:])
    fig = plt.figure(facecolor='#07000d', figsize=(15, 10))

    ax1 = plt.subplot2grid((6, 4), (1, 0),
                           rowspan=4,
                           colspan=4,
                           facecolor='#07000d')
    mpf.candlestick_ohlc(ax1,
                         data.values[-SP:],
                         width=.6,
                         colorup='#ff1717',
                         colordown='#53c156')
    # mpf.plot(data)
    Label1 = str(MA1) + ' SMA'
    Label2 = str(MA2) + ' SMA'

    ax1.plot(data.trade_date.values[-SP:],
             Av1[-SP:],
             '#e1edf9',
             label=Label1,
             linewidth=1.5)
    ax1.plot(data.trade_date.values[-SP:],
             Av2[-SP:],
             '#4ee6fd',
             label=Label2,
             linewidth=1.5)
    ax1.grid(True, color='w')
    ax1.xaxis.set_major_locator(mticker.MaxNLocator(10))
    ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
    ax1.yaxis.label.set_color("w")
    ax1.spines['bottom'].set_color("#5998ff")
    ax1.spines['top'].set_color("#5998ff")
    ax1.spines['left'].set_color("#5998ff")
    ax1.spines['right'].set_color("#5998ff")
    ax1.tick_params(axis='y', colors='w')
    plt.gca().yaxis.set_major_locator(mticker.MaxNLocator(prune='upper'))
    ax1.tick_params(axis='x', colors='w')
    plt.ylabel('Stock price and Volume')
    # 绘制成交量图
    volumeMin = 0
    # 先通过twinx来表达和ax1公用一个x轴
    ax1v = ax1.twinx()
    # 通过fill——between这个函数来表达准备把这个数据全部弄成某个颜色
    ax1v.fill_between(data.trade_date.values[-SP:],
                      volumeMin,
                      days.vol.values[-SP:],
                      facecolor='#00ffe8',
                      alpha=.4)
    ax1v.axes.yaxis.set_ticklabels([])
    ax1v.grid(False)
    ###Edit this to 3, so it's a bit larger
    ax1v.set_ylim(0, 3 * days.vol.values.max())
    ax1v.spines['bottom'].set_color("#5998ff")
    ax1v.spines['top'].set_color("#5998ff")
    ax1v.spines['left'].set_color("#5998ff")
    ax1v.spines['right'].set_color("#5998ff")
    ax1v.tick_params(axis='x', colors='w')
    ax1v.tick_params(axis='y', colors='w')
    # 我们画一下RSI图
    # plot an RSI indicator on top
    maLeg = plt.legend(loc=9,
                       ncol=2,
                       prop={'size': 7},
                       fancybox=True,
                       borderaxespad=0.)
    maLeg.get_frame().set_alpha(0.4)
    textEd = pylab.gca().get_legend().get_texts()
    pylab.setp(textEd[0:5], color='w')

    ax0 = plt.subplot2grid((6, 4), (0, 0),
                           sharex=ax1,
                           rowspan=1,
                           colspan=4,
                           facecolor='#07000d')
    # rsi = rsiFunc(data.Close.values)
    rsi = talib.RSI(data.close.values)
    rsiCol = '#c1f9f7'
    posCol = '#386d13'
    negCol = '#8f2020'

    ax0.plot(data.trade_date.values[-SP:], rsi[-SP:], rsiCol, linewidth=1.5)
    ax0.axhline(70, color=negCol)
    ax0.axhline(30, color=posCol)
    ax0.fill_between(data.trade_date.values[-SP:],
                     rsi[-SP:],
                     70,
                     where=(rsi[-SP:] >= 70),
                     facecolor=negCol,
                     edgecolor=negCol,
                     alpha=0.5)
    ax0.fill_between(data.trade_date.values[-SP:],
                     rsi[-SP:],
                     30,
                     where=(rsi[-SP:] <= 30),
                     facecolor=posCol,
                     edgecolor=posCol,
                     alpha=0.5)
    ax0.set_yticks([30, 70])
    ax0.yaxis.label.set_color("w")
    ax0.spines['bottom'].set_color("#5998ff")
    ax0.spines['top'].set_color("#5998ff")
    ax0.spines['left'].set_color("#5998ff")
    ax0.spines['right'].set_color("#5998ff")
    ax0.tick_params(axis='y', colors='w')
    ax0.tick_params(axis='x', colors='w')
    plt.ylabel('RSI')

    # MACD图
    # plot an MACD indicator on bottom
    ax2 = plt.subplot2grid((6, 4), (5, 0),
                           sharex=ax1,
                           rowspan=1,
                           colspan=4,
                           facecolor='#07000d')
    fillcolor = '#00ffe8'
    nslow = 26
    nfast = 12
    nema = 9
    emaslow, emafast, macd = talib.MACD(data.close.values,
                                        fastperiod=nfast,
                                        slowperiod=nslow,
                                        signalperiod=nema)
    ax2.plot(data.trade_date.values[-SP:],
             emaslow[-SP:],
             color='#4ee6fd',
             lw=2)
    ax2.plot(data.trade_date.values[-SP:],
             emafast[-SP:],
             color='#e1edf9',
             lw=1)
    # bar = np.where(macd,2*macd,0)
    '''
    bar_red = np.where(macd > 0, 2 * macd, 0)  # 绘制BAR>0 柱状图
    bar_green = np.where(macd < 0, 2 * macd, 0)  # 绘制BAR<0 柱状图
    show_func(bar_red)
    ax2.bar(data.trade_date.values[-SP:], bar_red[-SP:], facecolor='red')
    ax2.bar(data.trade_date.values[-SP:], bar_green[-SP:], facecolor='green')
    '''
    # ax2.bar(data.trade_date.values[-SP:], macd[-SP:],facecolor=fillcolor)
    ax2.fill_between(data.trade_date.values[-SP:],
                     macd[-SP:] * 2,
                     0,
                     alpha=0.5,
                     facecolor=fillcolor,
                     edgecolor=fillcolor)
    # ax2.fill_between(data.trade_date.values[-SP:], macd[-SP:] - ema9[-SP:], 0, alpha=0.5, facecolor=fillcolor,edgecolor=fillcolor)
    plt.gca().yaxis.set_major_locator(mticker.MaxNLocator(prune='upper'))
    ax2.spines['bottom'].set_color("#5998ff")
    ax2.spines['top'].set_color("#5998ff")
    ax2.spines['left'].set_color("#5998ff")
    ax2.spines['right'].set_color("#5998ff")
    ax2.tick_params(axis='x', colors='w')
    ax2.tick_params(axis='y', colors='w')
    plt.ylabel('MACD', color='w')
    ax2.yaxis.set_major_locator(mticker.MaxNLocator(nbins=5, prune='upper'))
    for label in ax2.xaxis.get_ticklabels():
        label.set_rotation(45)
    # 展示图
    plt.ylabel('MACD')
    plt.show()
コード例 #8
0
ファイル: plot_utilities.py プロジェクト: m-rubik/pyTrade-ML
def plot_dataframe(df, ticker, name=None, plot=True, starting_date=None):

    from mplfinance import candlestick_ohlc

    df = dataframe_utilities.add_indicators(df)

    if starting_date is not None:
        df = df.truncate(before=starting_date)

    # ohlc: open high, low close
    # df_ohlc = df['5. adjusted close'].resample('10D').ohlc()
    # df_ohlc = df['4. close'].resample('10D').ohlc()
    # df_volume = df['6. volume'].resample('10D').sum()

    df_ohlc = df.resample("D").agg({
        '1. open': 'first',
        '2. high': 'max',
        '2. low': 'min',
        '4. close': 'last'
    })
    # df_ohlc = df_resampled.ohlc()
    df_volume = df['6. volume'].resample("D").sum()
    df_ohlc.reset_index(inplace=True)
    df_ohlc.dropna(inplace=True)
    df_volume.dropna(inplace=True)

    df_ohlc['date'] = df_ohlc['date'].map(mdates.date2num)

    df_ohlc.head()

    fig, (ax1, ax2, ax3,
          ax4) = plt.subplots(nrows=4,
                              ncols=1,
                              figsize=(19.2, 10.8),
                              dpi=96,
                              sharex=True,
                              gridspec_kw={'height_ratios': [2, 1, 1, 0.5]})

    ax1.xaxis_date()

    candlestick_ohlc(ax1,
                     df_ohlc.values,
                     width=1,
                     colorup='#77d879',
                     colordown='#db3f3f')
    ax1.set_xlabel('Time')
    ax1.set_ylabel('Price per Share (USD)')
    titleAX1 = 'Historic Share Price of ' + ticker
    ax1.set_title(titleAX1,
                  horizontalalignment='center',
                  verticalalignment='top')
    ax1.plot(df.index,
             df['volatility_bbh'],
             color="yellow",
             alpha=0.5,
             linewidth=1,
             label="Bollinger High")
    ax1.plot(df.index,
             df['volatility_bbl'],
             color="red",
             alpha=0.5,
             linewidth=1,
             label="Bollinger Low")
    ax1.fill_between(df.index,
                     y1=df['volatility_bbh'],
                     y2=df['volatility_bbl'],
                     color='orange',
                     alpha='0.3')
    ax1.legend(loc="lower left")

    ax2.plot(df.index,
             df['trend_macd'],
             color='purple',
             linewidth=0.5,
             label="MACD")
    ax2.plot(df.index,
             df['trend_macd_signal'],
             color='orange',
             alpha=0.5,
             linewidth=1,
             markersize=1,
             label="MACD Signal")
    ax2.set_xlabel('Time')
    ax2.set_ylabel('Value')
    ax2.set_ylim([-1, 1])
    titleAX2 = 'MACD of ' + ticker
    ax2.set_title(titleAX2,
                  horizontalalignment='center',
                  verticalalignment='top')
    ax2.legend(loc="lower left")

    ax3.set_xlabel('Time')
    ax3.set_ylabel('Value')
    titleAX3 = 'Other Indicators of ' + ticker
    ax3.set_title(titleAX3,
                  horizontalalignment='center',
                  verticalalignment='top')
    ax3.plot(df.index,
             df['momentum_rsi'],
             color='purple',
             alpha=1,
             linewidth=1,
             markersize=1,
             label="RSI")
    ax3.plot(df.index,
             df['momentum_stoch'],
             color='black',
             alpha=1,
             linewidth=1,
             markersize=1,
             label="Stochastic %K")
    ax3.plot(df.index,
             df['momentum_stoch_signal'],
             color='red',
             alpha=1,
             linewidth=1,
             markersize=1,
             label="Stochastic %D")

    horiz_line_data = np.array([30 for i in range(len(df.index))])
    ax3.plot(df.index,
             horiz_line_data,
             '--',
             alpha=0.5,
             linewidth=0.5,
             label="RSI Low")
    horiz_line_data = np.array([70 for i in range(len(df.index))])
    ax3.plot(df.index,
             horiz_line_data,
             '--',
             alpha=0.5,
             linewidth=0.5,
             label="RSI High")
    horiz_line_data = np.array([20 for i in range(len(df.index))])
    ax3.plot(df.index,
             horiz_line_data,
             '--',
             alpha=0.5,
             linewidth=0.5,
             label="Stochastic Low")
    horiz_line_data = np.array([80 for i in range(len(df.index))])
    ax3.plot(df.index,
             horiz_line_data,
             '--',
             alpha=0.5,
             linewidth=0.5,
             label="Stochastic High")
    ax3.legend(loc="lower left")

    ax4.set_xlabel('Time')
    ax4.set_ylabel('Number of Shares')
    titleAX4 = 'Market Share Volume of ' + ticker
    ax4.set_title(titleAX4,
                  horizontalalignment='center',
                  verticalalignment='top')
    ax4.fill_between(df_volume.index.map(mdates.date2num),
                     df_volume.values,
                     0,
                     color="blue")

    plt.tight_layout()

    my_dpi = 96

    if name is None:
        name = ticker
    fig.savefig('./figures/{}.png'.format(name),
                dpi=my_dpi * 10,
                bbox_inches='tight')

    # if starting_date == None:
    #     fig.savefig('./figures/fullhistory/ETF/{}.png'.format(ticker), dpi=my_dpi*10,bbox_inches='tight')

    if plot:
        plt.show()
コード例 #9
0
 def graph_data(self, istock, MA1, MA2):
     """
     Use this to dynamically pull a stock.
     """
     try:
         print('Currently Pulling', stock)
         urlToVisit = 'http://chartapi.finance.yahoo.com/instrument/1.0/'+stock+'/chartdata;type=quote;range=10y/csv'
         stockFile =[]
         try:
             sourceCode = urllib.request.urlopen(urlToVisit).read().decode()
             splitSource = sourceCode.split('\n')
             for eachLine in splitSource:
                 splitLine = eachLine.split(',')
                 if len(splitLine)==6:
                     if 'values' not in eachLine:
                         stockFile.append(eachLine)
         except Exception as e:
             print(str(e), 'failed to organize pulled data.')
     except Exception as e:
         print(str(e), 'failed to pull pricing data')
     try:
         date, closep, highp, lowp, openp, volume = np.loadtxt(
             stockFile,
             delimiter=',', 
             unpack=True,                                           
             converters={ 0: self.bytes_per_date_to_num('%Y%m%d')}
             )
         x = 0
         y = len(date)
         newAr = []
         while x < y:
             appendLine = date[x],openp[x],highp[x],lowp[x],closep[x],volume[x]
             newAr.append(appendLine)
             x+=1
         Av1 = self.moving_average(closep, MA1)
         Av2 = self.moving_average(closep, MA2)
         SP = len(date[MA2-1:])
         fig = plt.figure(facecolor='#07000d')
         ax1 = plt.subplot2grid((6,4), (1,0), rowspan=4, colspan=4, axisbg='#07000d')
         candlestick_ohlc(ax1, newAr[-SP:], width=.6, colorup='#53c156', colordown='#ff1717')
         Label1 = str(MA1)+' SMA'
         Label2 = str(MA2)+' SMA'
         ax1.plot(date[-SP:],Av1[-SP:],'#e1edf9',label=Label1, linewidth=1.5)
         ax1.plot(date[-SP:],Av2[-SP:],'#4ee6fd',label=Label2, linewidth=1.5)
         ax1.grid(True, color='w')
         ax1.xaxis.set_major_locator(mticker.MaxNLocator(10))
         ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
         ax1.yaxis.label.set_color("w")
         ax1.spines['bottom'].set_color("#5998ff")
         ax1.spines['top'].set_color("#5998ff")
         ax1.spines['left'].set_color("#5998ff")
         ax1.spines['right'].set_color("#5998ff")
         ax1.tick_params(axis='y', colors='w')
         plt.gca().yaxis.set_major_locator(mticker.MaxNLocator(prune='upper'))
         ax1.tick_params(axis='x', colors='w')
         plt.ylabel('Stock price and Volume')
         maLeg = plt.legend(
             loc=9, 
             ncol=2, 
             prop={'size':7},
             fancybox=True, 
             borderaxespad=0.0
             )
         maLeg.get_frame().set_alpha(0.4)
         textEd = pylab.gca().get_legend().get_texts()
         pylab.setp(textEd[0:5], color = 'w')
         volumeMin = 0
         ax0 = plt.subplot2grid((6,4), (0,0), sharex=ax1, rowspan=1, colspan=4, axisbg='#07000d')
         rsi = self.rsi(closep)
         rsiCol = '#c1f9f7'
         posCol = '#386d13'
         negCol = '#8f2020'
         ax0.plot(date[-SP:], rsi[-SP:], rsiCol, linewidth=1.5)
         ax0.axhline(70, color=negCol)
         ax0.axhline(30, color=posCol)
         ax0.fill_between(date[-SP:], rsi[-SP:], 70, where=(rsi[-SP:]>=70), facecolor=negCol, edgecolor=negCol, alpha=0.5)
         ax0.fill_between(date[-SP:], rsi[-SP:], 30, where=(rsi[-SP:]<=30), facecolor=posCol, edgecolor=posCol, alpha=0.5)
         ax0.set_yticks([30,70])
         ax0.yaxis.label.set_color("w")
         ax0.spines['bottom'].set_color("#5998ff")
         ax0.spines['top'].set_color("#5998ff")
         ax0.spines['left'].set_color("#5998ff")
         ax0.spines['right'].set_color("#5998ff")
         ax0.tick_params(axis='y', colors='w')
         ax0.tick_params(axis='x', colors='w')
         plt.ylabel('RSI')
         ax1v = ax1.twinx()
         ax1v.fill_between(date[-SP:],volumeMin, volume[-SP:], facecolor='#00ffe8', alpha=.4)
         ax1v.axes.yaxis.set_ticklabels([])
         ax1v.grid(False)
         ax1v.set_ylim(0, 3*volume.max())
         ax1v.spines['bottom'].set_color("#5998ff")
         ax1v.spines['top'].set_color("#5998ff")
         ax1v.spines['left'].set_color("#5998ff")
         ax1v.spines['right'].set_color("#5998ff")
         ax1v.tick_params(axis='x', colors='w')
         ax1v.tick_params(axis='y', colors='w')
         ax2 = plt.subplot2grid(
             (6, 4), 
             (5, 0), 
             sharex=ax1, 
             rowspan=1, 
             colspan=4, 
             axisbg='#07000d'
             )
         fillcolor = '#00ffe8'
         # nslow = 26
         # nfast = 12
         nema = 9
         _, _, macd = self.compute_macd(closep)
         ema9 = self.exp_moving_average(macd, nema)
         ax2.plot(date[-SP:], macd[-SP:], color='#4ee6fd', lw=2)
         ax2.plot(date[-SP:], ema9[-SP:], color='#e1edf9', lw=1)
         ax2.fill_between(
             date[-SP:], 
             macd[-SP:]-ema9[-SP:], 
             0, 
             alpha=0.5, 
             facecolor=fillcolor, 
             edgecolor=fillcolor
             )
         plt.gca().yaxis.set_major_locator(mticker.MaxNLocator(prune='upper'))
         ax2.spines['bottom'].set_color("#5998ff")
         ax2.spines['top'].set_color("#5998ff")
         ax2.spines['left'].set_color("#5998ff")
         ax2.spines['right'].set_color("#5998ff")
         ax2.tick_params(axis='x', colors='w')
         ax2.tick_params(axis='y', colors='w')
         plt.ylabel('MACD', color='w')
         ax2.yaxis.set_major_locator(mticker.MaxNLocator(nbins=5, prune='upper'))
         for label in ax2.xaxis.get_ticklabels():
             label.set_rotation(45)
         plt.suptitle(stock.upper(),color='w')
         plt.setp(ax0.get_xticklabels(), visible=False)
         plt.setp(ax1.get_xticklabels(), visible=False)
         ax1.annotate(
             'Big news!',
             (date[510], Av1[510]),
             xytext=(0.8, 0.9), 
             textcoords='axes fraction',
             arrowprops=dict(facecolor='white', shrink=0.05),
             fontsize=14, 
             color = 'w',
             horizontalalignment='right', 
             verticalalignment='bottom'
             )
         plt.subplots_adjust(
             left=.09, 
             bottom=.14, 
             right=.94, 
             top=.95, 
             wspace=.20, 
             hspace=0
             )
         plt.show()
         fig.savefig('example.png', facecolor=fig.get_facecolor())
     except Exception as e:
         print('main loop', str(e))