コード例 #1
0
ファイル: julian.py プロジェクト: denfromufa/hcpy
 def TestStringRepresentations():
     # Test string representations (note leading spaces)
     Julian.day_offset = mpf("0")
     Julian.interval_representation = "c"
     j1, j2 = mpf("2451545.0"), mpf("2451545.5")
     assert str(Julian(j1)) == " 1Jan2000:12:00"
     assert str(Julian(mpi(j1, j2))) == " <<1Jan2000:12:00, 2Jan2000:00:00>>"
     Julian.day_offset = mpf("0.5")
     assert str(Julian(j1)) == " 1Jan2000:00:00"
     assert str(Julian(mpi(j1, j2))) == " <<1Jan2000:00:00, 1Jan2000:12:00>>"
コード例 #2
0
 def check_spectral_norm(self, M, tolerance=1e-10):
     """
     check iv_spectral_norm() and iv_spectral_norm_rough() against a numerical result from scipy.
     
     @param tolerance: assumed guaranteed relative tolerance on scipy's result
     """
     approx_spectral_norm = scipy.linalg.norm(
         iv_matrix_to_numpy_ndarray(iv_matrix_mid_as_mp(M)), 2)
     self.assertIn(approx_spectral_norm,
                   iv_spectral_norm(M) * (1 + tolerance * mp.mpi(-1, 1)))
     self.assertIn(
         approx_spectral_norm,
         iv_spectral_norm_rough(M) * (1 + tolerance * mp.mpi(-1, 1)))
コード例 #3
0
def is_in(region1, region2):
    """ Returns True if the region1 is in the region2, returns False otherwise

    Args:
        region1 (list of pairs): (hyper)space defined by the regions
        region2 (list of pairs): (hyper)space defined by the regions
    """
    if len(region1) is not len(region2):
        print("The intervals does not have the same size")
        return False

    for dimension in range(len(region1)):
        if mpi(region1[dimension]) not in mpi(region2[dimension]):
            return False
    return True
コード例 #4
0
def test_special_printers():
    class IntervalPrinter(LambdaPrinter):
        """Use ``lambda`` printer but print numbers as ``mpi`` intervals. """
        def _print_Integer(self, expr):
            return "mpi('%s')" % super(IntervalPrinter,
                                       self)._print_Integer(expr)

        def _print_Rational(self, expr):
            return "mpi('%s')" % super(IntervalPrinter,
                                       self)._print_Rational(expr)

    def intervalrepr(expr):
        return IntervalPrinter().doprint(expr)

    expr = sqrt(sqrt(2) + sqrt(3)) + S(1) / 2

    func0 = lambdify((), expr, modules="mpmath", printer=intervalrepr)
    func1 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter)
    func2 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter())

    mpi = type(mpmath.mpi(1, 2))

    assert isinstance(func0(), mpi)
    assert isinstance(func1(), mpi)
    assert isinstance(func2(), mpi)
コード例 #5
0
def test_special_printers():
    from sympy.printing.lambdarepr import IntervalPrinter

    def intervalrepr(expr):
        return IntervalPrinter().doprint(expr)

    expr = sqrt(sqrt(2) + sqrt(3)) + S.Half

    func0 = lambdify((), expr, modules="mpmath", printer=intervalrepr)
    func1 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter)
    func2 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter())

    mpi = type(mpmath.mpi(1, 2))

    assert isinstance(func0(), mpi)
    assert isinstance(func1(), mpi)
    assert isinstance(func2(), mpi)

    # To check Is lambdify loggamma works for mpmath or not
    exp1 = lambdify(x, loggamma(x), 'mpmath')(5)
    exp2 = lambdify(x, loggamma(x), 'mpmath')(1.8)
    exp3 = lambdify(x, loggamma(x), 'mpmath')(15)
    exp_ls = [exp1, exp2, exp3]

    sol1 = mpmath.loggamma(5)
    sol2 = mpmath.loggamma(1.8)
    sol3 = mpmath.loggamma(15)
    sol_ls = [sol1, sol2, sol3]

    assert exp_ls == sol_ls
コード例 #6
0
def iv_P_norm_expm(P_sqrt_T, M1, A, M2, tau):
    """
    Bound on P-ellipsoid norm of (M1 (expm(A*t) - I) M2)  for |t| < tau

    using the theorem in arXiv:1911.02537, section "Norm bounding of summands"

    @param P_sqrt_T: see iv_P_norm()
    """
    P_sqrt_T = iv.matrix(P_sqrt_T)
    M1 = iv.matrix(M1)
    A = iv.matrix(A)
    M2 = iv.matrix(M2)
    # coerce tau to maximum
    tau = abs(iv.mpf(tau)).b
    # P-ellipsoid norms
    M1_p = iv_P_norm(M=M1, P_sqrt_T=P_sqrt_T)
    M2_p = iv_P_norm(M=M2, P_sqrt_T=P_sqrt_T)
    A_p = iv_P_norm(M=A, P_sqrt_T=P_sqrt_T)
    # A_pow[i] = A ** i
    A_pow = _iv_matrix_powers(A)
    # Work around bug in mpmath, see comment in iv_P_norm()
    zero = iv.matrix(mp.zeros(len(A)))
    M1 = zero + M1
    # terms from [arXiv:1911.02537]
    M1_Ai_M2_p = lambda i: iv_P_norm(M=M1 @ A_pow[i] @ M2, P_sqrt_T=P_sqrt_T)
    gamma = lambda i: 1 / math.factorial(i) * (M1_Ai_M2_p(i) - M1_p * A_p ** i * M2_p)
    max_norm = sum([gamma(i) * (tau ** i) for i in range(1, IV_NORM_EVAL_ORDER + 1)]) + M1_p * M2_p * (iv.exp(A_p * tau) - 1)
    # the lower bound is always 0 (for t=0)
    return mp.mpi([0, max_norm.b])
コード例 #7
0
def LDL(mat):
    """
    Algorithm for numeric LDL factization, exploiting sparse structure.

    This function is a modification of scipy.sparse.SparseMatrix._LDL_sparse,
    allowing mpmath.mpi interval arithmetic objects as entries.

    L, D are SparseMatrix objects. However we assign values through _smat member
    to avoid type conversions to Rational.
    """
    Lrowstruc = mat.row_structure_symbolic_cholesky()
    print 'Number of entries in L: ', np.sum(map(len, Lrowstruc))
    L = SparseMatrix(mat.rows, mat.rows,
                     dict([((i, i), mpi(0)) for i in range(mat.rows)]))
    D = SparseMatrix(mat.rows, mat.cols, {})
    for i in range(len(Lrowstruc)):
        for j in Lrowstruc[i]:
            if i != j:
                L._smat[(i, j)] = mat._smat.get((i, j), mpi(0))
                summ = 0
                for p1 in Lrowstruc[i]:
                    if p1 < j:
                        for p2 in Lrowstruc[j]:
                            if p2 < j:
                                if p1 == p2:
                                    summ += L[i, p1]*L[j, p1]*D[p1, p1]
                            else:
                                break
                    else:
                        break
                L._smat[(i, j)] = L[i, j] - summ
                L._smat[(i, j)] = L[i, j] / D[j, j]

            elif i == j:
                D._smat[(i, i)] = mat._smat.get((i, i), mpi(0))
                summ = 0
                for k in Lrowstruc[i]:
                    if k < i:
                        summ += L[i, k]**2*D[k, k]
                    else:
                        break
                D._smat[(i, i)] -= summ

    return L, D
コード例 #8
0
ファイル: test_load.py プロジェクト: xhajnal/DiPS
 def test_mpmath_intervals(self):
     print(colored('mpi math sanity check', 'blue'))
     ## Check more here https://docs.sympy.org/0.6.7/modules/mpmath/basics.html
     ## Sanity check test
     from mpmath import mpi  ## Real intervals
     my_interval = mpi(0, 5)
     self.assertEqual(my_interval.a, 0)
     self.assertEqual(my_interval.b, 5)
     self.assertEqual(my_interval.mid, (5+0)/2)
     self.assertEqual(my_interval.delta, abs(0-5))
コード例 #9
0
def _iv_matrix_powers(A):
    """
    return the first IV_NORM_EVAL_ORDER+1 powers of A:
    [I, A, A**2, ..., A**(IV_NORM_EVAL_ORDER)]
    """
    assert isinstance(A, iv.matrix)
    A = iv.matrix(A) + mp.mpi(0,0) # workaround bug
    A_pow = [iv.eye(len(A))]
    for i in range(IV_NORM_EVAL_ORDER+1):
        A_pow.append(A @ A_pow[-1])
    return A_pow
コード例 #10
0
        def test_rel_tolerance(tol, matrixClass):
            """
            test with given relative deviation
            """
            lower = 1e3 * matrixClass.eye(4)

            if matrixClass == generic_matrix.IntervalMatrix:
                upper = lower * mp.mpi(1 - tol / 2, 1 + tol / 2)
            else:
                upper = lower * (1 + tol)
            self.assertMatrixAlmostEqual(lower, upper)
コード例 #11
0
def iv_matrix_mid_to_numpy_ndarray(M):
    """
    convert midpoint of interval matrix to numpy ndarray
    """
    if isinstance(M, numpy.ndarray):
        return M
    Y = numpy.zeros((M.rows, M.cols))
    for i in range(M.rows):
        for j in range(M.cols):
            Y[i, j] = float(mp.mpf(mp.mpi(M[i, j]).mid))
    return Y
コード例 #12
0
 def test_abs_tolerance(tol, matrixClass):
     """
     test with given absolute deviation
     """
     lower = 1e-3 * matrixClass.eye(4)
     if matrixClass == generic_matrix.IntervalMatrix:
         upper = lower + matrixClass.ones(4, 4) * mp.mpi(
             -tol / 2, tol / 2)
     else:
         upper = lower + tol * matrixClass.ones(4, 4)
     self.assertMatrixAlmostEqual(lower, upper)
コード例 #13
0
 def m1_a_m2_tau_uy(self, u_index, y_index):
     """
     constituent parts of Delta_A_uy_i_j = M1 * (exp(A*t)-I) * M2,  |t|<tau:
     (M1, A, M2, tau, info_string) = m1_a_m2_tau_uy(i,j)
     info_string is a textual identifier
     """
     d = self.abstract_matrix_type
     # tau = max(delta t_u - delta t_y) maximized over the range delta_t_u_min ... _max and delta_t_y_min ... _max
     dtu = mp.mpi(self.sys.delta_t_u_min[u_index],
                  self.sys.delta_t_u_max[u_index])
     dty = mp.mpi(self.sys.delta_t_y_min[y_index],
                  self.sys.delta_t_y_max[y_index])
     tau = (
         dty - dtu
     ).b  # max(dty_j - dtu_i) for the given intervals of dty_j and dtu_i
     tau = d.convert_scalar(tau)  # convert to float if required
     if tau < 0:
         tau = 0
     return (self.A_ctrl @ (self.A_y[y_index] - d.eye(self.n)), self.A_cont,
             self.A_u[u_index] - d.eye(self.n), tau,
             "u {} combined with y {}".format(u_index, y_index))
コード例 #14
0
ファイル: number.py プロジェクト: denfromufa/hcpy
 def v(self, s):
     '''Interval numbers:  allowed forms are
         1. 'a +- b'
         2. 'a (b%)'  % sign is optional
         3. '[a, b]'
     In 1, a is the midpoint of the interval and b is the half-width.
     In 2, a is the midpoint of the interval and b is the half-width.
     In 3, the interval is indicated directly.
     '''
     e = ValueError("Improperly formed interval number '%s'" %s)
     s = s.replace(" ", "")
     if "+-" in s:
         n = [mpf(strip(i)) for i in s.split("+-")]
         return mpi(n[0] - n[1], n[0] + n[1])
     elif "(" in s:
         if s[0] == "(":  # Don't confuse with a complex number (x,y)
             return None
         if ")" not in s:
             raise e
         s = s.replace(")", "")
         percent = False
         if "%" in s:
             if s[-1] != "%":
                 raise e
             percent = True
             s = s.replace("%", "")
         a, p = [mpf(strip(i)) for i in s.split("(")]
         d = p
         if percent:
             d = a*p/mpf(100)
         return mpi(a - d, a + d)
     elif "," in s:
         if "[" not in s: raise e
         if "]" not in s: raise e
         s = s.replace("[", "")
         s = s.replace("]", "")
         n = [mpf(strip(i)) for i in s.split(",")]
         return mpi(n[0], n[1])
     else:
         return None
コード例 #15
0
ファイル: rational.py プロジェクト: denfromufa/hcpy
 def mpiTests(): # Test with mpi's
     onep2 = mpi("1", "2")
     third = Rational(1,3)
     # add
     assert no_idiff(onep2 + third, onep2 + 1/mpi(3))
     # radd
     assert no_idiff(third + onep2, onep2 + 1/mpi(3))
     # sub
     assert no_idiff(onep2 - third, onep2 - 1/mpi(3))
     # rsub
     assert no_idiff(third - onep2, -onep2 + 1/mpi(3))
     # mul
     assert no_idiff(onep2 * third, onep2 * 1/mpi(3))
     # rmul
     assert no_idiff(third * onep2, onep2 * 1/mpi(3))
     # div
     assert no_idiff(onep2 / third, onep2 /(1/mpi(3)))
     # rdiv
     assert no_idiff(third / onep2, (1/mpi(3)) / onep2)
コード例 #16
0
def iv_matrix_mid_as_mp(M):
    """
    entrywise midpoint of interval matrix,
    as (non-interval) mpmath matrix.

    If the input is a mpmath matrix, it is returned unchanged.
    If the input is a 2-dimensional numpy.ndarray, it is converted to mpmath.
    """
    if isinstance(M, numpy.ndarray):
        return mp.matrix(M)
    Y = mp.matrix(M.rows, M.cols)
    for i in range(M.rows):
        for j in range(M.cols):
            Y[i, j] = mp.mpi(M[i, j]).mid
    return Y
コード例 #17
0
ファイル: constants.py プロジェクト: vmauery/hcpy
def ParseRawData(show=False):
    '''Set show to True to have the names printed to stdout.
    '''
    def Compact(s):
        return s.replace(" ", "")

    # Locations of fields in data
    locations = {
        "name": (0, 55),
        "value": (55, 77),
        "uncertainty": (77, 98),
    }
    s = StringIO(raw_data)
    lines = s.readlines()
    constants = {}
    fix = 1
    for line in lines:
        line = line.strip()
        if not line:
            continue
        a, b = locations["name"]
        name = line[a:b].strip()
        a, b = locations["value"]
        value = Compact(line[a:b])
        a, b = locations["uncertainty"]
        uncertainty = Compact(line[a:b])
        if fix:
            if uncertainty == "(exact)":
                uncertainty = 0
            if "..." in value:
                value = value.replace("...", "")
        try:
            x = mpf(value)
            dx = mpf(uncertainty)
            if dx == 0:
                num = x
            else:
                num = mpi(x - dx, x + dx)
            constants[name] = num
        except Exception as e:
            print(name)
            print("  ", str(e))
    names = list(constants.keys())
    names.sort()
    if show:
        for name in names:
            print(name)
    return constants
コード例 #18
0
ファイル: test_lambdify.py プロジェクト: bannerbyte/SymPy
def test_special_printers():
    from sympy.polys.numberfields import IntervalPrinter

    def intervalrepr(expr):
        return IntervalPrinter().doprint(expr)

    expr = sqrt(sqrt(2) + sqrt(3)) + S(1)/2

    func0 = lambdify((), expr, modules="mpmath", printer=intervalrepr)
    func1 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter)
    func2 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter())

    mpi = type(mpmath.mpi(1, 2))

    assert isinstance(func0(), mpi)
    assert isinstance(func1(), mpi)
    assert isinstance(func2(), mpi)
コード例 #19
0
ファイル: constants.py プロジェクト: dvhart/hcpy
def ParseRawData(show=False):
    '''Set show to True to have the names printed to stdout.
    '''
    def Compact(s):
        return s.replace(" ", "")
    # Locations of fields in data
    locations = {
        "name" :        (0, 55),
        "value" :       (55, 77),
        "uncertainty" : (77, 98),
    }
    s = StringIO(raw_data)
    lines = s.readlines()
    constants = {}
    fix = 1
    for line in lines:
        line = strip(line)
        if not line:
            continue
        a, b = locations["name"]
        name = strip(line[a:b])
        a, b = locations["value"]
        value = Compact(line[a:b])
        a, b = locations["uncertainty"]
        uncertainty = Compact(line[a:b])
        if fix:
            if uncertainty == "(exact)":
                uncertainty = 0
            if "..." in value:
                value = value.replace("...", "")
        try:
            x = mpf(value)
            dx = mpf(uncertainty)
            if dx == 0:
                num = x
            else:
                num = mpi(x-dx, x+dx)
            constants[name] = num
        except Exception, e:
            print name
            print "  ", str(e)
コード例 #20
0
 def compute_strategy(self):
     if self.tau() > 1:
         # self.repetition -= 1
         # if self.repetition:
         #     return self.last_strategy
         # else:
         #     self.repetition = self.n_rep
         p = 0.5 / (self.tau() ** self.power)
         b = (self.norm_const *
              sqrt(-log(p) / (self.tau())))
         interval = mpmath.mpi(self.avg_loss - b,
                               self.avg_loss + b)
         for p in sorted(self.profiles, key=lambda x: self.exp_adv_loss[x]):
             if self.exp_adv_loss[p] in interval:
                 # print("exp_loss", self.exp_adv_loss[p], "is in", interval)
                 # print("with b", b, "and avg_loss", self.avg_loss)
                 return p.get_best_responder().compute_strategy()
     # print("unknown")
     # MODIFY to take into account the not-Unknown case
     # if I have not returned yet, then I must use fpl
     return super().compute_strategy()
コード例 #21
0
    def check_qlf_bounds(self, P_sqrt_T, M, abstractmatrix: AbstractMatrix):
        """
        test qlf_upper_bound, qlf_lower_bound for given matrices P_sqrt_T, M
        with random vectors x.
        """
        c1 = abstractmatrix.qlf_upper_bound(P_sqrt_T,
                                            M)  # c1 sqrt(V(Mx)) <= |x|
        c2 = abstractmatrix.qlf_lower_bound(P_sqrt_T,
                                            M)  # |Mx| <= c2 sqrt(V(x))

        def sqrt_V(x):
            """
            V(x) = x.T P_sqrt_T.T P_sqrt_T x.
            """
            return np.sqrt(x.T @ P_sqrt_T.T @ P_sqrt_T @ x)

        def mag(x):
            """
            |x|
            """
            return np.sqrt(np.sum(x**2))

        M_actual = M
        if M_actual is None:
            M_actual = np.eye(len(P_sqrt_T))

        RELTOL = 1e-10
        for i in range(100):
            x = np.random.uniform(low=-42, high=+42, size=len(P_sqrt_T))
            # c1 sqrt(V(Mx)) <= |x|
            if not mp.iv.isnan(c1) and c1 != mp.mpi(
                    '-inf', '+inf') and not mp.iv.isinf(c1):
                self.assertLessEqual(c1 * sqrt_V(M_actual @ x),
                                     mag(x) * (1 + RELTOL))
            # |Mx| <= c2 sqrt(V(x))
            self.assertLessEqual(mag(M_actual @ x),
                                 c2 * sqrt_V(x) * (1 + RELTOL))
コード例 #22
0
ファイル: test_lambdify.py プロジェクト: diofant/diofant
def test_special_printers():
    class IntervalPrinter(LambdaPrinter):
        """Use ``lambda`` printer but print numbers as ``mpi`` intervals."""
        def _print_Integer(self, expr):
            return f"mpi('{super()._print_Integer(expr)}')"

        def _print_Rational(self, expr):
            return f"mpi('{super()._print_Rational(expr)}')"

    def intervalrepr(expr):
        return IntervalPrinter().doprint(expr)

    expr = diofant.sqrt(diofant.sqrt(2) + diofant.sqrt(3)) + diofant.Rational(
        1, 2)

    func0 = lambdify((), expr, modules='mpmath', printer=intervalrepr)
    func1 = lambdify((), expr, modules='mpmath', printer=IntervalPrinter)
    func2 = lambdify((), expr, modules='mpmath', printer=IntervalPrinter())

    mpi = type(mpmath.mpi(1, 2))

    assert isinstance(func0(), mpi)
    assert isinstance(func1(), mpi)
    assert isinstance(func2(), mpi)
コード例 #23
0
def test_special_printers():
    class IntervalPrinter(LambdaPrinter):
        """Use ``lambda`` printer but print numbers as ``mpi`` intervals. """

        def _print_Integer(self, expr):
            return "mpi('%s')" % super(IntervalPrinter, self)._print_Integer(expr)

        def _print_Rational(self, expr):
            return "mpi('%s')" % super(IntervalPrinter, self)._print_Rational(expr)

    def intervalrepr(expr):
        return IntervalPrinter().doprint(expr)

    expr = sympy.sqrt(sympy.sqrt(2) + sympy.sqrt(3)) + sympy.S(1)/2

    func0 = lambdify((), expr, modules="mpmath", printer=intervalrepr)
    func1 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter)
    func2 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter())

    mpi = type(mpmath.mpi(1, 2))

    assert isinstance(func0(), mpi)
    assert isinstance(func1(), mpi)
    assert isinstance(func2(), mpi)
コード例 #24
0
ファイル: poincare_series_vv.py プロジェクト: bubonic/psage
def list_of_basis(N,weight,prec=501,tol=1e-20,sv_min=1E-1,sv_max=1E15,set_dim=None):
    r""" Returns a list of pairs (r,D) forming a basis
    """
    # First we find the smallest Discriminant for each of the components
    if(set_dim<>None and set_dim >0):
        dim=set_dim
    else:
        dim=dimension_jac_cusp_forms(int(weight+0.5),N,-1)
    basislist=dict()
    num_gotten=0
    co_tmp=dict()
    num_gotten=0
    C0=1
    RF=RealField(prec)
    if(silent>1):
        print "N=",N
        print "dim=",dim
        print "sv_min=",sv_min
        print "sv_max=",sv_max
    Aold=Matrix(RF,1)
    tol0=1E-20  #tol
    # we start with the first discriminant, then the second etc.
    Z2N=IntegerModRing(2*N)
    ZZ4N=IntegerModRing(4*N)
    for Dp in [1..max(1000,100*dim)]:
        D=-Dp # we use the dual of the Weil representation
        D4N=ZZ4N(D)
        if(not(is_square(D4N))):
            continue
        for r in my_modsqrt(D4N,N):
            # I want to make sure that P_{(D,r)} is independent from the previously computed functions
            # The only sure way to do this is to compute all submatrices (to a much smaller precision than what we want at the end)
            # The candidate is [D,r] and we need to compute the vector of [D,r,D',r']
            # for all D',r' already in the list
            ltmp1=dict()
            ltmp2=dict()
            j=0
            for [Dp,rp] in basislist.values():
                ltmp1[j]=[D,r,Dp,rp]
                ltmp2[j]=[Dp,rp,D,r]
                j=j+1
            ltmp1[j]=[D,r,D,r]
            #print "Checking: D,r,D,r=",ltmp1
            ctmp1=ps_coefficients_holomorphic_vec(N,weight,ltmp1,tol0)
            # print "ctmp1=",ctmp1
            if(j >0):
                #print "Checking: D,r,Dp,rp=",ltmp2    # Data is ok?: {0: True} 
                ctmp2=ps_coefficients_holomorphic_vec(N,weight,ltmp2,tol0)
                # print "ctmp2=",ctmp2
            #print "num_gotten=",num_gotten
            A=matrix(RF,num_gotten+1)
            # The old matrixc with the elements that are already added to the basis
            # print "Aold=\n",A,"\n"
            # print "num_gotten=",num_gotten
            # print "Aold=\n",Aold,"\n"
            for k in range(Aold.nrows()):
                for l in range(Aold.ncols()):
                    A[k,l]=Aold[k,l]
                    # endfor
                    # print "A set by old=\n",A,"\n"
                    # Add the (D',r',D,r) for each D',r' in the list
            tmp=RF(1.0)
            for l in range(num_gotten):                
                # we do not use  the scaling factor when
                # determining linear independence
                # mm=RF(abs(ltmp2[l][0]))/N4
                # tmp=RF(mm**(weight-one))
                A[num_gotten,l]=ctmp2['data'][l]*tmp
                # Add the (D,r,D',r') for each D',r' in the list
                # print "ctmp1.keys()=",ctmp1.keys()
            for l in range(num_gotten+1):
                #mm=RF(abs(ltmp1[l][2]))/4N
                #tmp=RF(mm**(weight-one))
                # print "scaled with=",tmp.n(200)
                A[l,num_gotten]=ctmp1['data'][l]*tmp
            #[d,B]=mat_inverse(A) # d=det(A) 
            #if(silent>1):
            #d=det(A)
            #print "det A = ",d
            # Now we have to determine whether we have a linearly independent set or not
            dold=mpmath.mp.dps
            mpmath.mp.dps=int(prec/3.3)
            AInt=mpmath.matrix(int(A.nrows()),int(A.ncols()))
            AMp=mpmath.matrix(int(A.nrows()),int(A.ncols()))
            if(silent>0):
                print "tol0=",tol0
            for ir in range(A.nrows()):
                for ik in range(A.ncols()):
                    AInt[ir,ik]=mpmath.mp.mpi(A[ir,ik]-tol0,A[ir,ik]+tol0)
                    AMp[ir,ik]=mpmath.mpf(A[ir,ik])

            d=mpmath.det(AMp)
            di=mpmath.mp.mpi(mpmath.mp.det(AInt))
            #for ir in range(A.nrows()):
            #    for ik in range(A.ncols()):
            #        #print "A.d=",AInt[ir,ik].delta
            if(silent>0):
                print "mpmath.mp.dps=",mpmath.mp.dps
                print "det(A)=",d
                print "det(A-as-interval)=",di
                print "d.delta=",di.delta
            #if(not mpmath.mpi(d) in di):
            #    raise ArithmeticError," Interval determinant not ok?"
            #ANP=A.numpy()
            #try: 
            #    u,s,vnp=svd(ANP) # s are the singular values
            #    sl=s.tolist()
            #    mins=min(sl)  # the smallest singular value
            #    maxs=max(sl)
            #    if(silent>1):
            #        print "singular values = ",s
            #except LinAlgError:
            #    if(silent>0):
            #        print "could not compute SVD!"
            #        print "using abs(det) instead"
            #   mins=abs(d)
            #    maxs=abs(d)
            #if((mins>sv_min and maxs< sv_max)): 
            zero=mpmath.mpi(0)
            if(zero not in di):
                if(silent>1):
                    print "Adding D,r=",D,r
                basislist[num_gotten]=[D,r]
                num_gotten=num_gotten+1
                if(num_gotten>=dim):
                    return basislist
                else:
                    #print "setting Aold to A"
                    Aold=A
            else:
                if(silent>1):
                    print " do not use D,r=",D,r
            # endif
            mpmath.mp.dps=dold
    # endfor
    if(num_gotten < dim):
        raise ValueError," did not find enough good elements for a basis list!"  
コード例 #25
0
def test_interval_to_mpi():
    assert Interval(0, 1).to_mpi() == mpi(0, 1)
    assert Interval(0, 1, True, False).to_mpi() == mpi(0, 1)
    assert type(Interval(0, 1).to_mpi()) == type(mpi(0, 1))
コード例 #26
0
ファイル: number.py プロジェクト: denfromufa/hcpy
        # Rational numbers
        Rational(3, 8) : (
            "3/8", "6/16", "0 12/32", "0-15/40", "0+18/48",
            ),
        Rational(-3, 7) : (
            "-3/7", "-6/14", "-0 12/28", "-0-15/35", "-0+18/42",
            ),
        Rational(3, -7) : (
            "-3/7", "-6/14", "-0 12/28", "-0-15/35", "-0+18/42",
            ),
    }
    # Because of a bug in mpi == and != tests, we have to test them
    # differently.
    mpi_tests = {
        # Interval numbers
        mpi(1, 3) : (
            "[1, 3]", "[1.0, 3]", "[1, 3.0]", "[1.0, 3.0]",
            "[1,3]", "[1.0,3]", "[1,3.0]", "[1.0,3.0]",
            "[   1,     3]", "[   1.0,3]", "[     1,     3.0]",
            "1.5 +- 0.5", "1.5+-0.5", "1.5+-      0.5", "1.5     +-0.5", 
            "1.5      +-      0.5", "15e-1 +- 500e-3", 
            "1.5(33.33333333333333333333%)", "1.5  (33.33333333333333333333%)",
            "1.5    (     33.33333333333333333333%)",
            "1.5    (     33.33333333333333333333     % )",
            "1.5(     33.33333333333333333333    %  )",
            "1.5(33.33333333333333333333    %  )",
            ),
    }

    n = Number()
    status = 0
コード例 #27
0
    def test_Interval(self):
        print(colored("Interval test here", 'blue'))
        self.assertEqual(1.0 in mpi(1, 1), True)
        self.assertEqual(1.0 in mpi(1, 2), True)
        self.assertEqual(1.0 in mpi(0, 1), True)
        self.assertEqual(1.0 in mpi(0, 2), True)

        self.assertEqual(5.0 not in mpi(1, 1), True)
        self.assertEqual(5.0 not in mpi(1, 2), True)
        self.assertEqual(5.0 not in mpi(0, 1), True)
        self.assertEqual(5.0 not in mpi(0, 2), True)

        self.assertEqual(mpi(1, 1) in mpi(1, 1), True)
        self.assertEqual(mpi(1, 1) in mpi(1, 2), True)
        self.assertEqual(mpi(1, 1) in mpi(0, 1), True)
        self.assertEqual(mpi(1, 1) in mpi(0, 2), True)

        self.assertEqual(mpi(1, 2) in mpi(1, 3), True)
        self.assertEqual(mpi(1, 2) in mpi(0, 2), True)
        self.assertEqual(mpi(1, 2) in mpi(0, 3), True)
        self.assertEqual(mpi(1, 2) not in mpi(0, 1), True)
        self.assertEqual(mpi(1, 2) not in mpi(2, 3), True)
        self.assertEqual(mpi(1, 2) not in mpi(1.5, 2), True)
コード例 #28
0
ファイル: test_sets.py プロジェクト: goretkin/diofant
def test_interval_to_mpi():
    assert Interval(0, 1).to_mpi() == mpi(0, 1)
    assert Interval(0, 1, True, False).to_mpi() == mpi(0, 1)
    assert isinstance(Interval(0, 1).to_mpi(), type(mpi(0, 1)))
コード例 #29
0
def list_of_basis(N,
                  weight,
                  prec=501,
                  tol=1e-20,
                  sv_min=1E-1,
                  sv_max=1E15,
                  set_dim=None):
    r""" Returns a list of pairs (r,D) forming a basis
    """
    # First we find the smallest Discriminant for each of the components
    if (set_dim <> None and set_dim > 0):
        dim = set_dim
    else:
        dim = dimension_jac_cusp_forms(int(weight + 0.5), N, -1)
    basislist = dict()
    num_gotten = 0
    co_tmp = dict()
    num_gotten = 0
    C0 = 1
    RF = RealField(prec)
    if (silent > 1):
        print "N=", N
        print "dim=", dim
        print "sv_min=", sv_min
        print "sv_max=", sv_max
    Aold = Matrix(RF, 1)
    tol0 = 1E-20  #tol
    # we start with the first discriminant, then the second etc.
    Z2N = IntegerModRing(2 * N)
    ZZ4N = IntegerModRing(4 * N)
    for Dp in [1..max(1000, 100 * dim)]:
        D = -Dp  # we use the dual of the Weil representation
        D4N = ZZ4N(D)
        if (not (is_square(D4N))):
            continue
        for r in my_modsqrt(D4N, N):
            # I want to make sure that P_{(D,r)} is independent from the previously computed functions
            # The only sure way to do this is to compute all submatrices (to a much smaller precision than what we want at the end)
            # The candidate is [D,r] and we need to compute the vector of [D,r,D',r']
            # for all D',r' already in the list
            ltmp1 = dict()
            ltmp2 = dict()
            j = 0
            for [Dp, rp] in basislist.values():
                ltmp1[j] = [D, r, Dp, rp]
                ltmp2[j] = [Dp, rp, D, r]
                j = j + 1
            ltmp1[j] = [D, r, D, r]
            #print "Checking: D,r,D,r=",ltmp1
            ctmp1 = ps_coefficients_holomorphic_vec(N, weight, ltmp1, tol0)
            # print "ctmp1=",ctmp1
            if (j > 0):
                #print "Checking: D,r,Dp,rp=",ltmp2    # Data is ok?: {0: True}
                ctmp2 = ps_coefficients_holomorphic_vec(N, weight, ltmp2, tol0)
                # print "ctmp2=",ctmp2
            #print "num_gotten=",num_gotten
            A = matrix(RF, num_gotten + 1)
            # The old matrixc with the elements that are already added to the basis
            # print "Aold=\n",A,"\n"
            # print "num_gotten=",num_gotten
            # print "Aold=\n",Aold,"\n"
            for k in range(Aold.nrows()):
                for l in range(Aold.ncols()):
                    A[k, l] = Aold[k, l]
                    # endfor
                    # print "A set by old=\n",A,"\n"
                    # Add the (D',r',D,r) for each D',r' in the list
            tmp = RF(1.0)
            for l in range(num_gotten):
                # we do not use  the scaling factor when
                # determining linear independence
                # mm=RF(abs(ltmp2[l][0]))/N4
                # tmp=RF(mm**(weight-one))
                A[num_gotten, l] = ctmp2['data'][l] * tmp
                # Add the (D,r,D',r') for each D',r' in the list
                # print "ctmp1.keys()=",ctmp1.keys()
            for l in range(num_gotten + 1):
                #mm=RF(abs(ltmp1[l][2]))/4N
                #tmp=RF(mm**(weight-one))
                # print "scaled with=",tmp.n(200)
                A[l, num_gotten] = ctmp1['data'][l] * tmp
            #[d,B]=mat_inverse(A) # d=det(A)
            #if(silent>1):
            #d=det(A)
            #print "det A = ",d
            # Now we have to determine whether we have a linearly independent set or not
            dold = mpmath.mp.dps
            mpmath.mp.dps = int(prec / 3.3)
            AInt = mpmath.matrix(int(A.nrows()), int(A.ncols()))
            AMp = mpmath.matrix(int(A.nrows()), int(A.ncols()))
            if (silent > 0):
                print "tol0=", tol0
            for ir in range(A.nrows()):
                for ik in range(A.ncols()):
                    AInt[ir, ik] = mpmath.mp.mpi(A[ir, ik] - tol0,
                                                 A[ir, ik] + tol0)
                    AMp[ir, ik] = mpmath.mpf(A[ir, ik])

            d = mpmath.det(AMp)
            di = mpmath.mp.mpi(mpmath.mp.det(AInt))
            #for ir in range(A.nrows()):
            #    for ik in range(A.ncols()):
            #        #print "A.d=",AInt[ir,ik].delta
            if (silent > 0):
                print "mpmath.mp.dps=", mpmath.mp.dps
                print "det(A)=", d
                print "det(A-as-interval)=", di
                print "d.delta=", di.delta
            #if(not mpmath.mpi(d) in di):
            #    raise ArithmeticError," Interval determinant not ok?"
            #ANP=A.numpy()
            #try:
            #    u,s,vnp=svd(ANP) # s are the singular values
            #    sl=s.tolist()
            #    mins=min(sl)  # the smallest singular value
            #    maxs=max(sl)
            #    if(silent>1):
            #        print "singular values = ",s
            #except LinAlgError:
            #    if(silent>0):
            #        print "could not compute SVD!"
            #        print "using abs(det) instead"
            #   mins=abs(d)
            #    maxs=abs(d)
            #if((mins>sv_min and maxs< sv_max)):
            zero = mpmath.mpi(0)
            if (zero not in di):
                if (silent > 1):
                    print "Adding D,r=", D, r
                basislist[num_gotten] = [D, r]
                num_gotten = num_gotten + 1
                if (num_gotten >= dim):
                    return basislist
                else:
                    #print "setting Aold to A"
                    Aold = A
            else:
                if (silent > 1):
                    print " do not use D,r=", D, r
            # endif
            mpmath.mp.dps = dold
    # endfor
    if (num_gotten < dim):
        raise ValueError, " did not find enough good elements for a basis list!"
コード例 #30
0
ファイル: poincare_series_vv.py プロジェクト: bubonic/psage
def gram_matrix(N,weight,prec=501,tol=1E-40,sv_min=1E-1,sv_max=1E15,bl=None,set_dim=None,force_prec=False):
    r""" Computes a matrix of p_{r,D}(r',D')
    for a basis of P_{r,D}, i.e. dim linearly independent P's
    INPUT: N      = Integer
           weight = Real
    OPTIONAL: 
           tol    = error bound for the Poincaré series
           sv_min = minimal allowed singular value when determining whether a given set is linarly independent or not.
           sv_max = maximally allowed singular value
           bl     = list of pairs (D_i,r_i) from which  we compute a matrix of coeffficients p_{D_i,r_i}(D_j,r_j)
        """
    # If we have supplied a list of D's and r's we make a gram matrix relative to these
    # otherwise we find a basis, i.e. linearly independent forms with correct dimension
    # find the dimension
    wt='%.4f'% weight
    if(N<10):
        stN="0"+str(N)
    else:
        stN=str(N)
    v=dict()
    filename_work="__N"+stN+"-"+wt+"--finding basis.txt"
    fp=open(filename_work,"write")
    fp.write("starting to find basis")
    fp.close()
    if(silent>0):
        print "Forcing precision:",force_prec
    set_silence_level(0)
    if(bl<>None): 
        dim=len(bl)
        l=bl
    else:
        if(set_dim<>None and set_dim >0):
            dim=set_dim
        else:
            dim=dimension_jac_cusp_forms(int(weight+0.5),N,-1)
        l=list_of_basis(N,weight,prec,tol,sv_min,sv_max,set_dim=dim)
    j=0
    for [D,r] in l.values():
        for [Dp,rp] in l.values():
            # Recall that the gram matrix is symmetric. We need only compute the upper diagonal
            if(v.values().count([Dp,rp,D,r])==0):
                v[j]=[D,r,Dp,rp]
                j=j+1
    # now v is a list we can get into computing coefficients
    # first we print the "gram data" (list of indices) to the file 
    s=str(N)+": (AI["+str(N)+"],["
    indices=dict()
    for j in range(len(l)):
        Delta=l[j][0]
        r=l[j][1]
        diff=(r*r-Delta) % (4*N)
        if(diff<>0):
            raise ValueError, "ERROR r^2=%s not congruent to Delta=%s mod %s!" %(r*r, Delta, 4*N)
        s=s+"("+str(Delta)+","+str(r)+")"
        indices[j]=[Delta,r]
        if(j<len(l)-1):
            s=s+","
        else:
            s=s+"]),"
    s=s+"\n"
    if(silent>0):
        print s+"\n"
    filename2="PS_Gramdata"+stN+"-"+wt+".txt"
    fp=open(filename2,"write")
    fp.write(s)
    fp.close()
    try:
        os.remove(filename_work)
    except os.error:
        print "Could not remove file:",filename_work
        pass
    filename_work="__N"+stN+"-"+wt+"--computing_gram_matrix.txt"
    fp=open(filename_work,"write")
    fp.write("")
    fp.close()
    #print "tol=",tol
    #set_silence_level(2)
    #print "force_prec(gram_mat)=",force_prec
    res=ps_coefficients_holomorphic_vec(N,weight,v,tol,prec,force_prec=force_prec)
    set_silence_level(0)

    res['indices']=indices
    maxerr=0.0
    for j in res['errs'].keys():
        tmperr=abs(res['errs'][j])
        #print "err(",j,")=",tmperr
        if(tmperr>maxerr):
            maxerr=tmperr
        # switch format for easier vewing
        res['errs'][j]=RR(tmperr)
    if(silent>0):
        print "maxerr=",RR(maxerr)
    res['maxerr']=maxerr
    wt_phalf='%.4f'% (weight+0.5)
    filename3="PS_Gramerr"+stN+"-"+wt+".txt"
    fp=open(filename3,"write")
    wt
    s="MAXERR["+wt_phalf+"]["+stN+"]="+str(RR(maxerr))
    fp.write(s)
    fp.close()
    if(res['ok']):
        Cps=res['data']
    else:
        print "Failed to compute Fourier coefficients!"
        return 0
    RF=RealField(prec)
    A=matrix(RF,dim)
    kappa=weight
    fourpi=RF(4.0)*pi.n(prec)
    one=RF(1.0)
    N4=RF(4*N)
    C=dict()
    if(silent>1):
        print "v=",v
        print "dim=",dim
    lastix=0
    # First set the upper right part of A
    for j in range(dim):
        ddim=dim-j
        if(silent>1):
            print "j=",j,"ddim=",ddim," lastix=",lastix
        for k in range(0,ddim):
            # need to scale with |D|^(k+0.5)
            if(silent>1):
                print "k=",k
                print "lastix+k=",lastix+k
            mm=RF(abs(v[lastix+k][0]))/N4
            tmp=RF(mm**(weight-one))
            if(silent>1):
                print "ddim+k=",ddim+k
            A[j,j+k]=Cps[lastix+k]*tmp
            C[v[lastix+k][0],v[lastix+k][1]]=Cps[lastix+k]
        lastix=lastix+k+1
    # And add the lower triangular part to mak the matrix symmetric
    for j in range(dim):
        for k in range(0,j):
            A[j,k]=A[k,j]
    # And print the gram matrix
    res['matrix']=A
    dold=mpmath.mp.dps
    mpmath.mp.dps=int(prec/3.3)
    AInt=mpmath.matrix(int(A.nrows()),int(A.ncols()))
    AMp=mpmath.matrix(int(A.nrows()),int(A.ncols()))
    for ir in range(A.nrows()):
        for ik in range(A.ncols()):
            AInt[ir,ik]=mpmath.mpi(A[ir,ik]-tol,A[ir,ik]+tol)
            AMp[ir,ik]=mpmath.mpf(A[ir,ik])
    d=mpmath.det(AMp)
    if(silent>1):
        print "det(A-as-mpmath)=",d
    di=mpmath.det(AInt)
    if(silent>1):
        print "det(A-as-interval)=",di
    res['det']=(RF(di.a),RF(di.b))
    
    filename="PS_Gram"+stN+"-"+wt+".txt"
    if(silent>1):
        print "printing to file: "+filename
    print_matrix_to_file(A,filename,'A['+str(N)+']')
    if(silent>1):
        print "A-A.transpose()=",norm(A-A.transpose())
    B=A^-1
    #[d,B]=mat_inverse(A)
    if(silent>1):
        print "A=",A.n(100)
        print "det(A)=",di
        print "Done making inverse!"
    #res['det']=d
    res['inv']=B
    mpmath.mp.dps=dold
    filename="PS_Gram-inv"+stN+"-"+wt+".txt"        
    print_matrix_to_file(B,filename,' AI['+str(N)+']')
    # first make the filename
    s='%.1e'%tol
    filename3="PS_Coeffs"+stN+"-"+wt+"-"+s+".sobj"
    # If the file already exist we load it and append the new data
    if(silent>0):
        print "saving data to ",filename3
    try:
        f=open(filename3,"read")
    except IOError:
        if(silent>0):
            print "no file before!"
        # do nothing
    else:
        if(silent>0):
            print "file: "+filename3+" exists!"
        f.close()
        Cold=load(filename3)
        for key in Cold.keys():
            #                print"key:",key
            if(not C.has_key(key)): # then we addd it
                print"key:",key," does not exist in the new version!"
                C[key]=Cold[key]
                save(C,filename3)
    ## Save the whole thing
    filename="PS_all_gram"+stN+"-"+wt+".sobj"
    save(res,filename) 
    ## our work is comleted and we can remove the file
    try:
        os.remove(filename_work)
    except os.error:
        print "Could not remove file:",filename_work
        pass
    return res
コード例 #31
0
    Entries assumed to be integers.
    """
    f = open(filename)
    v = np.array(eval(f.readline()), dtype=int)
    f.close()
    ind = np.array(v, dtype=int)[:, :2]
    val = np.array(v)[:, 2]
    return ss.csc_matrix((val, (ind[:, 0], ind[:, 1])))


text = open('results/ldl_mpi.txt', 'w')
for number in range(1, 21):
    positive = get_matrix('./results/CHOLMOD_permuted/permuted{}.txt'.format(number))
    size = max(positive.indices)+1
    print >>text, 'Domain {}:'.format(number)
    print >>text, 'Number of entries: ', len(positive.data)
    # change integers into mpi intervals
    print >>text, 'Entries :', np.unique(positive.data)
    positive.data = map(lambda x: mpi(x), positive.data)
    positive = positive.todok()
    sympy_positive = SparseMatrix(size, size, positive)
    L, D = LDL(sympy_positive)
    D = D._smat.values()
    delta = [x.delta/x.mid for x in D]
    print >>text, "The smallest diagonal element in LDL': ", min(D)
    print >>text, 'Ratio largest/smallest :  ', max(D)/min(D)
    print >>text, "Maximal relative delta around diagonal elements: ", max(delta)
    print >>text, '\n'
text.close()
コード例 #32
0
ファイル: test_sets.py プロジェクト: skirpichev/diofant
def test_interval_to_mpi():
    assert Interval(0, 1).to_mpi() == mpi(0, 1)
    assert Interval(0, 1, True, False).to_mpi() == mpi(0, 1)
    assert isinstance(Interval(0, 1).to_mpi(), type(mpi(0, 1)))
コード例 #33
0
def gram_matrix(N,
                weight,
                prec=501,
                tol=1E-40,
                sv_min=1E-1,
                sv_max=1E15,
                bl=None,
                set_dim=None,
                force_prec=False):
    r""" Computes a matrix of p_{r,D}(r',D')
    for a basis of P_{r,D}, i.e. dim linearly independent P's
    INPUT: N      = Integer
           weight = Real
    OPTIONAL: 
           tol    = error bound for the Poincaré series
           sv_min = minimal allowed singular value when determining whether a given set is linarly independent or not.
           sv_max = maximally allowed singular value
           bl     = list of pairs (D_i,r_i) from which  we compute a matrix of coeffficients p_{D_i,r_i}(D_j,r_j)
        """
    # If we have supplied a list of D's and r's we make a gram matrix relative to these
    # otherwise we find a basis, i.e. linearly independent forms with correct dimension
    # find the dimension
    wt = '%.4f' % weight
    if (N < 10):
        stN = "0" + str(N)
    else:
        stN = str(N)
    v = dict()
    filename_work = "__N" + stN + "-" + wt + "--finding basis.txt"
    fp = open(filename_work, "write")
    fp.write("starting to find basis")
    fp.close()
    if (silent > 0):
        print "Forcing precision:", force_prec
    set_silence_level(0)
    if (bl <> None):
        dim = len(bl)
        l = bl
    else:
        if (set_dim <> None and set_dim > 0):
            dim = set_dim
        else:
            dim = dimension_jac_cusp_forms(int(weight + 0.5), N, -1)
        l = list_of_basis(N, weight, prec, tol, sv_min, sv_max, set_dim=dim)
    j = 0
    for [D, r] in l.values():
        for [Dp, rp] in l.values():
            # Recall that the gram matrix is symmetric. We need only compute the upper diagonal
            if (v.values().count([Dp, rp, D, r]) == 0):
                v[j] = [D, r, Dp, rp]
                j = j + 1
    # now v is a list we can get into computing coefficients
    # first we print the "gram data" (list of indices) to the file
    s = str(N) + ": (AI[" + str(N) + "],["
    indices = dict()
    for j in range(len(l)):
        Delta = l[j][0]
        r = l[j][1]
        diff = (r * r - Delta) % (4 * N)
        if (diff <> 0):
            raise ValueError, "ERROR r^2=%s not congruent to Delta=%s mod %s!" % (
                r * r, Delta, 4 * N)
        s = s + "(" + str(Delta) + "," + str(r) + ")"
        indices[j] = [Delta, r]
        if (j < len(l) - 1):
            s = s + ","
        else:
            s = s + "]),"
    s = s + "\n"
    if (silent > 0):
        print s + "\n"
    filename2 = "PS_Gramdata" + stN + "-" + wt + ".txt"
    fp = open(filename2, "write")
    fp.write(s)
    fp.close()
    try:
        os.remove(filename_work)
    except os.error:
        print "Could not remove file:", filename_work
        pass
    filename_work = "__N" + stN + "-" + wt + "--computing_gram_matrix.txt"
    fp = open(filename_work, "write")
    fp.write("")
    fp.close()
    #print "tol=",tol
    #set_silence_level(2)
    #print "force_prec(gram_mat)=",force_prec
    res = ps_coefficients_holomorphic_vec(N,
                                          weight,
                                          v,
                                          tol,
                                          prec,
                                          force_prec=force_prec)
    set_silence_level(0)

    res['indices'] = indices
    maxerr = 0.0
    for j in res['errs'].keys():
        tmperr = abs(res['errs'][j])
        #print "err(",j,")=",tmperr
        if (tmperr > maxerr):
            maxerr = tmperr
        # switch format for easier vewing
        res['errs'][j] = RR(tmperr)
    if (silent > 0):
        print "maxerr=", RR(maxerr)
    res['maxerr'] = maxerr
    wt_phalf = '%.4f' % (weight + 0.5)
    filename3 = "PS_Gramerr" + stN + "-" + wt + ".txt"
    fp = open(filename3, "write")
    wt
    s = "MAXERR[" + wt_phalf + "][" + stN + "]=" + str(RR(maxerr))
    fp.write(s)
    fp.close()
    if (res['ok']):
        Cps = res['data']
    else:
        print "Failed to compute Fourier coefficients!"
        return 0
    RF = RealField(prec)
    A = matrix(RF, dim)
    kappa = weight
    fourpi = RF(4.0) * pi.n(prec)
    one = RF(1.0)
    N4 = RF(4 * N)
    C = dict()
    if (silent > 1):
        print "v=", v
        print "dim=", dim
    lastix = 0
    # First set the upper right part of A
    for j in range(dim):
        ddim = dim - j
        if (silent > 1):
            print "j=", j, "ddim=", ddim, " lastix=", lastix
        for k in range(0, ddim):
            # need to scale with |D|^(k+0.5)
            if (silent > 1):
                print "k=", k
                print "lastix+k=", lastix + k
            mm = RF(abs(v[lastix + k][0])) / N4
            tmp = RF(mm**(weight - one))
            if (silent > 1):
                print "ddim+k=", ddim + k
            A[j, j + k] = Cps[lastix + k] * tmp
            C[v[lastix + k][0], v[lastix + k][1]] = Cps[lastix + k]
        lastix = lastix + k + 1
    # And add the lower triangular part to mak the matrix symmetric
    for j in range(dim):
        for k in range(0, j):
            A[j, k] = A[k, j]
    # And print the gram matrix
    res['matrix'] = A
    dold = mpmath.mp.dps
    mpmath.mp.dps = int(prec / 3.3)
    AInt = mpmath.matrix(int(A.nrows()), int(A.ncols()))
    AMp = mpmath.matrix(int(A.nrows()), int(A.ncols()))
    for ir in range(A.nrows()):
        for ik in range(A.ncols()):
            AInt[ir, ik] = mpmath.mpi(A[ir, ik] - tol, A[ir, ik] + tol)
            AMp[ir, ik] = mpmath.mpf(A[ir, ik])
    d = mpmath.det(AMp)
    if (silent > 1):
        print "det(A-as-mpmath)=", d
    di = mpmath.det(AInt)
    if (silent > 1):
        print "det(A-as-interval)=", di
    res['det'] = (RF(di.a), RF(di.b))

    filename = "PS_Gram" + stN + "-" + wt + ".txt"
    if (silent > 1):
        print "printing to file: " + filename
    print_matrix_to_file(A, filename, 'A[' + str(N) + ']')
    if (silent > 1):
        print "A-A.transpose()=", norm(A - A.transpose())
    B = A ^ -1
    #[d,B]=mat_inverse(A)
    if (silent > 1):
        print "A=", A.n(100)
        print "det(A)=", di
        print "Done making inverse!"
    #res['det']=d
    res['inv'] = B
    mpmath.mp.dps = dold
    filename = "PS_Gram-inv" + stN + "-" + wt + ".txt"
    print_matrix_to_file(B, filename, ' AI[' + str(N) + ']')
    # first make the filename
    s = '%.1e' % tol
    filename3 = "PS_Coeffs" + stN + "-" + wt + "-" + s + ".sobj"
    # If the file already exist we load it and append the new data
    if (silent > 0):
        print "saving data to ", filename3
    try:
        f = open(filename3, "read")
    except IOError:
        if (silent > 0):
            print "no file before!"
        # do nothing
    else:
        if (silent > 0):
            print "file: " + filename3 + " exists!"
        f.close()
        Cold = load(filename3)
        for key in Cold.keys():
            #                print"key:",key
            if (not C.has_key(key)):  # then we addd it
                print "key:", key, " does not exist in the new version!"
                C[key] = Cold[key]
                save(C, filename3)
    ## Save the whole thing
    filename = "PS_all_gram" + stN + "-" + wt + ".sobj"
    save(res, filename)
    ## our work is comleted and we can remove the file
    try:
        os.remove(filename_work)
    except os.error:
        print "Could not remove file:", filename_work
        pass
    return res
コード例 #34
0
ファイル: rational.py プロジェクト: denfromufa/hcpy
 def mpi(self):
     n = mpf(self.n)/mpf(self.d)
     return mpi(n, n)
コード例 #35
0
# coding: utf-8

# In[2]:

from mpmath import mpi

# In[3]:

a = mpi([0, 1])

# In[4]:


def f0(x):
    return x**2 - x


# In[5]:


def f1(x):
    return x * (x - 1)


# In[6]:


def f2(x):
    return 1 / 4 - (x - 1 / 2)**2