def apply_rotation(self, mgrid): if self.rot_mat is not None: shape = mgrid[0].shape rotated = self.rot_mat.dot(mgrid_to_points(mgrid).T).T return points_to_mgrid(rotated, shape) else: return mgrid
def get_voxel_grid_real_space(images, append_ones=False): # Get shape excluding channels shape = images.shape[:-1] # Get affine transforming voxel positions to real space positions vox_to_real_affine = images.affine[:-1, :-1] # Transform axes from voxel space to real space grid_vox_space = np.mgrid[0:shape[0]:1, 0:shape[1]:1, 0:shape[2]:1] # Move grid to real space grid_points_real_space = vox_to_real_affine.dot( mgrid_to_points(grid_vox_space).T).T # Center centered_grid_points_real_space = grid_points_real_space - \ np.mean(grid_points_real_space, axis=0) # Append column of ones? if append_ones: centered_grid_points_real_space = np.column_stack( (grid_points_real_space, np.ones(len(grid_points_real_space)))) # Return real space grid as mgrid points = points_to_mgrid(centered_grid_points_real_space, shape) return points
def sample_plane_at(norm_vector, sample_dim, real_space_span, offset_from_center, noise_sd, test_mode=False): # Prepare normal vector to the plane n_hat = np.array(norm_vector, np.float32) n_hat /= np.linalg.norm(n_hat) # Add noise? if type(noise_sd) is not np.ndarray: noise_sd = np.random.normal(scale=noise_sd, size=3) n_hat += noise_sd n_hat /= np.linalg.norm(n_hat) if np.all(n_hat[:-1] < 0.2): # Vector pointing primarily up, noise will have large effect on image # orientation. We force the first two components to go into the # positive direction to control variability of sampling n_hat[:-1] = np.abs(n_hat[:-1]) if np.all(np.isclose(n_hat[:-1], 0)): u = np.array([1, 0, 0]) v = np.array([0, 1, 0]) else: # Find vector in same vertical plane as nhat nhat_vs = n_hat.copy() nhat_vs[-1] = nhat_vs[-1] + 1 nhat_vs /= np.linalg.norm(nhat_vs) # Get two orthogonal vectors in plane, u pointing down in z-direction u = get_rotation_matrix(np.cross(n_hat, nhat_vs), -90).dot(n_hat) v = np.cross(n_hat, u) # Define basis matrix + displacement to center (affine transformation) basis = np.column_stack((u, v, n_hat)) # Define regular grid (centered at origin) hd = real_space_span // 2 g = np.linspace(-hd, hd, sample_dim) j = complex(sample_dim) grid = np.mgrid[-hd:hd:j, -hd:hd:j, offset_from_center:offset_from_center:1j] # Calculate voxel coordinates on the real space grid points = mgrid_to_points(grid) real_points = basis.dot(points.T).T real_grid = points_to_mgrid(real_points, grid.shape[1:]) if test_mode: return real_grid, g, np.linalg.inv(basis) else: return real_grid
def map_real_space_pred(pred, grid, inv_basis, voxel_grid_real_space, method="nearest"): """ TODO """ print("Mapping to real coordinate space...") # Prepare fill value vector, we set this to 1.0 background fill = np.zeros(shape=pred.shape[-1], dtype=np.float32) fill[0] = 1.0 # Initialize interpolator object intrp = RegularGridInterpolator(grid, pred, fill_value=fill, bounds_error=False, method=method) points = inv_basis.dot(mgrid_to_points(voxel_grid_real_space).T).T transformed_grid = points_to_mgrid(points, voxel_grid_real_space[0].shape) # Prepare mapped pred volume mapped = np.empty(transformed_grid[0].shape + (pred.shape[-1], ), dtype=pred.dtype) # Prepare interpolation function def _do(xs, ys, zs, index): return intrp((xs, ys, zs)), index # Prepare thread pool of 10 workers from concurrent.futures import ThreadPoolExecutor pool = ThreadPoolExecutor(max_workers=7) # Perform interpolation async. inds = np.arange(transformed_grid.shape[1]) result = pool.map(_do, transformed_grid[0], transformed_grid[1], transformed_grid[2], inds) i = 1 for map, ind in result: # Print status print(" %i/%i" % (i, inds[-1] + 1), end="\r", flush=True) i += 1 # Map the interpolation results into the volume mapped[ind] = map print("") pool.shutdown() return mapped
def sample_box_at(real_placement, sample_dim, real_box_dim, noise_sd, test_mode): j = complex(sample_dim) a, b, c = real_placement grid = np.mgrid[a:a + real_box_dim:j, b:b + real_box_dim:j, c:c + real_box_dim:j] rot_mat = np.eye(3) rot_grid = grid if noise_sd: # Get random rotation vector rot_axis = get_random_views(N=1, dim=3, pos_z=True) rot_angle = False while not rot_angle: angle = np.abs(np.random.normal(scale=noise_sd, size=1)[0]) if angle < 2 * np.pi: rot_angle = angle rot_mat = get_rotation_matrix(rot_axis, angle_rad=rot_angle) # Center --> apply rotation --> revert centering --> mgrid points = mgrid_to_points(grid) center = np.mean(points, axis=0) points -= center points = rot_mat.dot(points.T).T + center rot_grid = points_to_mgrid(points, grid.shape[1:]) if test_mode: axes = (np.linspace(a, a + real_box_dim, sample_dim), np.linspace(b, b + real_box_dim, sample_dim), np.linspace(c, c + real_box_dim, sample_dim)) return rot_grid, axes, np.linalg.inv(rot_mat) else: return rot_grid