def grappa_unoptimized_float_cpu(): config = GadgetronConfig() config.add_reader('1008','GadgetIsmrmrdAcquisitionMessageReader') config.add_reader('1026','GadgetIsmrmrdWaveformMessageReader') config.add_writer('1022','MRIImageWriter') config.add_gadget('RemoveROOversampling') config.add_gadget('Grappa',props=[ ('target_coils','8'), ('use_gpu','false') ]) config.add_gadget('GrappaUnmixing') config.add_gadget('Extract') config.add_gadget('ImageFinish') return(config)
def test_gadgetron_grappa_coil_output(self): config = GadgetronConfig() config.add_reader('1008', 'GadgetIsmrmrdAcquisitionMessageReader') config.add_reader('1026', 'GadgetIsmrmrdWaveformMessageReader') config.add_writer('1022', 'MRIImageWriter') config.add_gadget('RemoveROOversampling') config.add_gadget('Grappa', props=[('target_coils', '8'), ('use_gpu', 'false'), ('uncombined_channels', '1,2,3,4,5,6,7,8,9,10,11,12')]) config.add_gadget('GrappaUnmixing') config.add_gadget('Extract', props=[('extract_magnitude', 'false')('extract_real', 'true'), ('extract_imag', 'true')]) config.add_gadget('ImageFinish') data, header = client(self.filename, config_local=config.tostring()) data = data[0, ...] + 1j * data[1, ...] view(data, montage_axis=0)
def grappa_unoptimized_float_cpu(): # pylint: disable=C0301 '''Generates grappa_unoptimized_float_cpu.xml. Generates [4]_. References ========== .. [4] https://github.com/gadgetron/gadgetron/blob/master/gadgets/grappa/config/grappa_unoptimized_float.xml ''' # pylint: enable=C0301 config = GadgetronConfig() config.add_reader('1008', 'GadgetIsmrmrdAcquisitionMessageReader') config.add_reader('1026', 'GadgetIsmrmrdWaveformMessageReader') config.add_writer('1022', 'MRIImageWriter') config.add_gadget('RemoveROOversampling') config.add_gadget('Grappa', props=[('target_coils', '8'), ('use_gpu', 'false')]) config.add_gadget('GrappaUnmixing') config.add_gadget('Extract') config.add_gadget('ImageFinish') return config
def epi(): # pylint: disable=C0301 '''Generates epi.xml. Generates [1]_. References ========== .. [1] https://github.com/gadgetron/gadgetron/blob/master/gadgets/epi/epi.xml ''' # pylint: enable=C0301 config = GadgetronConfig() config.add_reader('1008', 'GadgetIsmrmrdAcquisitionMessageReader') config.add_reader('1026', 'GadgetIsmrmrdWaveformMessageReader') config.add_writer('1022', 'MRIImageWriter') config.add_gadget('NoiseAdjust') config.add_gadget('ReconX', 'EPIReconXGadget') config.add_gadget('EPICorr') config.add_gadget('FFTX', dll='gadgetron_epi') config.add_gadget('AccTrig', 'AcquisitionAccumulateTriggerGadget', props=[('trigger_dimension', 'repetition'), ('sorting_dimension', 'slice')]) config.add_gadget('Buff', 'BucketToBufferGadget', props=[('N_dimension', ''), ('S_dimension', ''), ('split_slices', 'true'), ('ignore_segment', 'true')]) config.add_gadget('FFT') config.add_gadget('Combine') config.add_gadget('Extract') config.add_gadget('AutoScale') config.add_gadget('FloatToShort', 'FloatToUShortGadget') config.add_gadget('ImageFinish') return config
def grappa_float_cpu(): config = GadgetronConfig() config.add_reader('1008','GadgetIsmrmrdAcquisitionMessageReader') config.add_reader('1026','GadgetIsmrmrdWaveformMessageReader') config.add_writer('1022','MRIImageWriter') config.add_gadget('NoiseAdjust') config.add_gadget('PCA','PCACoilGadget') config.add_gadget('CoilReduction',props=[ ('coils_out','16') ]) config.add_gadget('AsymmetricEcho','AsymmetricEchoAdjustROGadget') # RO asymmetric echo handling config.add_gadget('RemoveROOversampling') config.add_gadget('Grappa',props=[ ('target_coils','8'), ('use_gpu','false') ]) config.add_gadget('GrappaUnmixing') config.add_gadget('Extract') config.add_gadget('ImageFinish') return(config)
def generic_cartesian_grappa(): config = GadgetronConfig() config.add_reader('1008','GadgetIsmrmrdAcquisitionMessageReader') config.add_reader('1026','GadgetIsmrmrdWaveformMessageReader') config.add_writer('1022','MRIImageWriter') config.add_gadget('NoiseAdjust') config.add_gadget('AsymmetricEcho','AsymmetricEchoAdjustROGadget') config.add_gadget('RemoveROOversampling') config.add_gadget('AccTrig','AcquisitionAccumulateTriggerGadget',props=[ ('trigger_dimension',''), ('sorting_dimension','') ]) config.add_gadget('BucketToBuffer',props=[ ('N_dimension','contrast'), ('S_dimension','average'), ('split_slices','false'), ('ignore_segment','true'), ('verbose','true') ]) config.add_gadget('PrepRef','GenericReconCartesianReferencePrepGadget',props=[ ('debug_folder',''), ('perform_timing','true'), ('verbose','true'), ('average_all_ref_N','true'), ('average_all_ref_S','true'), ('prepare_ref_always','true') ]) config.add_gadget('CoilCompression','GenericReconEigenChannelGadget',props=[ ('debug_folder',''), ('perform_timing','true'), ('verbose','true'), ('average_all_ref_N','true'), ('average_all_ref_S','true'), ('upstream_coil_compression','true'), ('upstream_coil_compression_thres','0.002'), ('upstream_coil_compression_num_modesKept','0') ]) config.add_gadget('Recon','GenericReconCartesianGrappaGadget',props=[ ('image_series','0'), ('coil_map_algorithm','Inati'), ('downstream_coil_compression','true'), ('downstream_coil_compression_thres','0.01'), ('downstream_coil_compression_num_modesKept','0'), ('debug_folder',''), ('perform_timing','true'), ('verbose','true'), ('send_out_gfactor','false') ]) config.add_gadget('PartialFourierHandling','GenericReconPartialFourierHandlingFilterGadget',props=[ ('debug_folder',''), ('perform_timing','false'), ('verbose','false'), ('skip_processing_meta_field','Skip_processing_after_recon'), ('partial_fourier_filter_RO_width','0.15'), ('partial_fourier_filter_E1_width','0.15'), ('partial_fourier_filter_E2_width','0.15'), ('partial_fourier_filter_densityComp','false') ]) config.add_gadget('KSpaceFilter','GenericReconKSpaceFilteringGadget',props=[ ('debug_folder',''), ('perform_timing','false'), ('verbose','false'), ('skip_processing_meta_field','Skip_processing_after_recon'), ('filterRO','Gaussian'), ('filterRO_sigma','1.0'), ('filterRO_width','0.15'), ('filterE1','Gaussian'), ('filterE1_sigma','1.0'), ('filterE1_width','0.15'), ('filterE2','Gaussian'), ('filterE2_sigma','1.0'), ('filterE2_width','0.15'), ]) config.add_gadget('FOVAdjustment','GenericReconFieldOfViewAdjustmentGadget',props=[ ('debug_folder',''), ('perform_timing','false'), ('verbose','false') ]) config.add_gadget('Scaling','GenericReconImageArrayScalingGadget',props=[ ('perform_timing','false'), ('verbose','false'), ('min_intensity_value','64'), ('max_intensity_value','4095'), ('scalingFactor','10.0'), ('use_constant_scalingFactor','true'), ('auto_scaling_only_once','true'), ('scalingFactor_dedicated','100.0') ]) config.add_gadget('ImageArraySplit') config.add_gadget('ComplexToFloatAttrib','ComplexToFloatGadget') config.add_gadget('FloatToShortAttrib','FloatToUShortGadget',props=[ ('max_intensity','32767'), ('min_intensity','0'), ('intensity_offset','0') ]) config.add_gadget('ImageFinish') return(config)
def epi_gtplus_grappa(): '''GT Plus configuration file for general 2D epi reconstruction.''' config = GadgetronConfig() config.add_reader('1008', 'GadgetIsmrmrdAcquisitionMessageReader') config.add_reader('1026', 'GadgetIsmrmrdWaveformMessageReader') config.add_writer('1022', 'MRIImageWriter') config.add_gadget('NoiseAdjust') config.add_gadget('ReconX', 'EPIReconXGadget') config.add_gadget('EPICorr') config.add_gadget('FFTX', dll='gadgetron_epi') config.add_gadget('Acc', 'GtPlusAccumulatorWorkOrderTriggerGadget', props=[('verboseMode', 'false'), ('noacceleration_triggerDim1', 'DIM_Repetition'), ('noacceleration_triggerDim2', 'DIM_NONE'), ('noacceleration_numOfKSpace_triggerDim1', '1'), ('separate_triggerDim1', 'DIM_Repetition'), ('separate_triggerDim2', 'DIM_NONE'), ('separate_numOfKSpace_triggerDim1', '1'), ('other_kspace_matching_Dim', 'DIM_Repetition')]) # Recon computation for 2DT cases config.add_gadget( 'Recon', 'GtPlusRecon2DTGadget', props=[ # kspace data ('dim_4th', 'DIM_Contrast'), ('dim_5th', 'DIM_Slice'), # ork flow ('workOrder_ShareDim', 'DIM_Repetition'), # o accelaration mode ('no_acceleration_averageall_ref', 'true'), ('no_acceleration_ref_numOfModes', '0'), ('no_acceleration_same_combinationcoeff_allS', 'false'), ('no_acceleration_whichS_combinationcoeff', '0'), # separate mode ('separate_averageall_ref', 'true'), ('separate_ref_numOfModes', '0'), ('separate_fullres_coilmap', 'false'), ('separate_same_combinationcoeff_allS', 'false'), ('separate_whichS_combinationcoeff', '0'), # coil compression ('same_coil_compression_coeff_allS', 'false'), ('downstream_coil_compression', 'false'), ('coil_compression_thres', '-1'), ('coil_compression_num_modesKept', '-1'), # parameters for coil map estimation ('coil_map_algorithm', 'ISMRMRD_SOUHEIL'), ('csm_kSize', '7'), ('csm_powermethod_num', '3'), ('csm_true_3D', 'false'), ('csm_iter_num', '5'), ('csm_iter_thres', '0.001'), # algorithm ('recon_algorithm', 'ISMRMRD_GRAPPA'), ('recon_kspace_needed', 'false'), ('recon_auto_parameters', 'true'), # parameters for ISMRMRD_GRAPPA ('grappa_kSize_RO', '5'), ('grappa_kSize_E1', '4'), ('grappa_kSize_E2', '4'), ('grappa_reg_lamda', '0.0005'), ('grappa_calib_over_determine_ratio', '0'), # parameters for scaling and image sending ('min_intensity_value', '64'), ('max_intensity_value', '4095'), ('scalingFactor', '-1.0'), ('use_constant_scalingFactor', 'false'), # parameters for kspace filter, image data ('filterRO', 'Gaussian'), ('filterRO_sigma', '1.0'), ('filterRO_width', '0.15'), ('filterE1', 'Gaussian'), ('filterE1_sigma', '1.0'), ('filterE1_width', '0.15'), ('filterE2', 'Gaussian'), ('filterE2_sigma', '1.0'), ('filterE2_width', '0.15'), # parameters for kspace filter, ref data ('filterRefRO', 'Hanning'), ('filterRefRO_sigma', '1.5'), ('filterRefRO_width', '0.15'), ('filterRefE1', 'Hanning'), ('filterRefE1_sigma', '1.5'), ('filterRefE1_width', '0.15'), ('filterRefE2', 'Hanning'), ('filterRefE2_sigma', '1.5'), ('filterRefE2_width', '0.15'), # parameters for debug and timing ('debugFolder', ''), ('debugFolder2', ''), ('cloudNodeFile', 'myCloud_2DT.txt'), ('performTiming', 'true'), ('verboseMode', 'false'), # parameters for system acquisition ('timeStampResolution', '0.0025'), # parameters for recon job split ('job_split_by_S', 'false'), ('job_num_of_N', '32'), ('job_max_Megabytes', '10240'), ('job_overlap', '2'), ('job_perform_on_control_node', 'true') ]) config.add_gadget('ComplexToFloatAttrib', 'ComplexToFloatGadget') config.add_gadget('FloatToShortAttrib', 'FloatToUShortGadget') config.add_gadget('ImageFinish') return (config)
def epi(): config = GadgetronConfig() config.add_reader('1008', 'GadgetIsmrmrdAcquisitionMessageReader') config.add_reader('1026', 'GadgetIsmrmrdWaveformMessageReader') config.add_writer('1022', 'MRIImageWriter') config.add_gadget('NoiseAdjust') config.add_gadget('ReconX', 'EPIReconXGadget') config.add_gadget('EPICorr') config.add_gadget('FFTX', dll='gadgetron_epi') config.add_gadget('AccTrig', 'AcquisitionAccumulateTriggerGadget', props=[('trigger_dimension', 'repetition'), ('sorting_dimension', 'slice')]) config.add_gadget('Buff', 'BucketToBufferGadget', props=[('N_dimension', ''), ('S_dimension', ''), ('split_slices', 'true'), ('ignore_segment', 'true')]) config.add_gadget('FFT') config.add_gadget('Combine') config.add_gadget('Extract') config.add_gadget('AutoScale') config.add_gadget('FloatToShort', 'FloatToUShortGadget') config.add_gadget('ImageFinish') return (config)
def distributed_image_default(): config = GadgetronConfig() config.add_reader('1008', 'GadgetIsmrmrdAcquisitionMessageReader') config.add_reader('1022', 'MRIImageReader') config.add_writer('1022', 'MRIImageWriter') config.add_writer('1008', 'GadgetIsmrmrdAcquisitionMessageWriter') config.add_gadget('RemoveROOversampling') config.add_gadget('AccTrig', 'AcquisitionAccumulateTriggerGadget', props=[('trigger_dimension', 'repetition'), ('sorting_dimension', 'slice')]) config.add_gadget('Buff', 'BucketToBufferGadget', props=[('N_dimension', ''), ('S_dimension', ''), ('split_slices', 'true')]) config.add_gadget('SimpleRecon') config.add_gadget('ImageArraySplit') config.add_gadget('Distribute', 'IsmrmrdImageDistributeGadget', dll='gadgetron_distributed', props=[('parallel_dimension', 'repetition'), ('use_this_node_for_compute', 'true'), ('single_package_mode', 'true')]) config.add_gadget('Extract') config.add_gadget('Collect', dll='gadgetron_distributed') config.add_gadget('ImageSort', props=[('sorting_dimension', 'repetition')]) config.add_gadget('ImageFinish') return (config)
class GadgetronConfigTestCase(unittest.TestCase): def setUp(self): self.config = GadgetronConfig() self.filename = GadgetronClient.grappa_input_filename() def test_create_xml(self): self.config.add_reader(1008,'GadgetIsmrmrdAcquisitionMessageReader') self.config.add_writer(1004,'MRIImageWriterCPLX') self.config.add_writer(1005,'MRIImageWriterFLOAT') self.config.add_writer(1006,'MRIImageWriterUSHORT') self.config.add_gadget('Acc','AccumulatorGadget') self.config.add_gadget('FFT') self.config.add_gadget('Extract') self.config.add_gadget('ImageFinishFLOAT','ImageFinishGadgetFLOAT') # self.config.print() def test_create_default_config(self): config = configs.default() truth = GadgetronTestConfig.default_config() res = len(main.diff_texts(truth.encode(),config.tostring().encode())) self.assertTrue(res == 0) def test_use_default_config(self): # Give the filename of raw data to the client filename = GadgetronClient.raw_input_filename() # Send gadgetron the local default configuration file config = configs.default() # print(config) # data,header = client(filename,config_local=config.get_filename()) data,header = client(filename,config_local=config.tostring()) # Make sure the output is the same as when h5 is given true_output_data = GadgetronClient.true_output_data() self.assertTrue(np.allclose(data,true_output_data)) def test_use_grappa_cpu_config(self): config = configs.grappa_cpu() data,header = client(self.filename,config_local=config.tostring()) data_true,header_true = client(self.filename,config='grappa_cpu.xml') self.assertTrue(np.allclose(data,data_true)) def test_use_grappa_float_cpu_config(self): config = configs.grappa_float_cpu() data,header = client(self.filename,config_local=config.tostring()) data_true,header_true = client(self.filename,config='grappa_float_cpu.xml') self.assertTrue(np.allclose(data,data_true)) def test_use_grappa_unoptimized_cpu_config(self): config = configs.grappa_unoptimized_cpu() data,header = client(self.filename,config_local=config.tostring()) data_true,header_true = client(self.filename,config='grappa_unoptimized.xml') self.assertTrue(np.allclose(data,data_true)) def test_use_grappa_unoptimized_float_cpu_config(self): config = configs.grappa_unoptimized_float_cpu() data,header = client(self.filename,config_local=config.tostring()) data_true,header_true = client(self.filename,config='grappa_unoptimized_float.xml') self.assertTrue(np.allclose(data,data_true)) def test_use_distributed_default_config(self): config = configs.distributed_default() data,header = client(self.filename,config_local=config.tostring()) data_true,header_true = client(self.filename,config='distributed_default.xml') self.assertTrue(np.allclose(data,data_true)) def test_use_distributed_image_default_config(self): config = configs.distributed_image_default() data,header = client(self.filename,config_local=config.tostring()) data_true,header_true = client(self.filename,config='distributed_image_default.xml') self.assertTrue(np.allclose(data,data_true))
coil_images = f['dataset']['coil_images'] coil_images = coil_images['real'] + 1j * coil_images['imag'] # R = 2 tmp = np.fft.fft2(coil_images) tmp[..., ::2, :] = 0 aliased = np.fft.ifft2(tmp) view(aliased, montage_axis=0) # Make the config num_coils = 16 config = GadgetronConfig() config.add_reader('1008', 'GadgetIsmrmrdAcquisitionMessageReader') config.add_reader('1026', 'GadgetIsmrmrdWaveformMessageReader') config.add_writer('1022', 'MRIImageWriter') config.add_gadget('NoiseAdjust') config.add_gadget('CoilReduction', props=[('coils_out', str(num_coils))]) # RO asymmetric echo handling config.add_gadget('AsymmetricEcho', 'AsymmetricEchoAdjustROGadget') config.add_gadget('RemoveROOversampling') config.add_gadget('Grappa', props=[ ('target_coils', str(num_coils)), ('use_gpu', 'false'), ('uncombined_channels', ','.join(str(x) for x in range(num_coils))), ]) config.add_gadget('GrappaUnmixing') # config.add_gadget('PassthroughPython', 'PythonGadget', props=[ # ('python_module', 'passthrough'), # ('python_class', 'Passthrough'),
def python_short(): # pylint: disable=C0301 '''python_short.xml Generates [2]_. References ========== .. [2] https://github.com/gadgetron/gadgetron/blob/master/gadgets/python/config/python_short.xml ''' # pylint: enable=C0301 config = GadgetronConfig() config.add_reader('1008', 'GadgetIsmrmrdAcquisitionMessageReader') config.add_reader('1026', 'GadgetIsmrmrdWaveformMessageReader') config.add_writer('1022', 'MRIImageWriter') config.add_gadget('RemoveOversamplingPython', 'PythonGadget', props=[ ('python_path', '/home/myuser/scripts/python'), ('python_module', 'remove_2x_oversampling'), ('python_class', 'Remove2xOversampling'), ]) config.add_gadget('AccReconPython', 'PythonGadget', props=[ ('python_path', '/home/myuser/scripts/python'), ('python_module', 'accumulate_and_recon'), ('python_class', 'AccumulateAndRecon'), ]) config.add_gadget('CoilCombinePython', 'PythonGadget', props=[ ('python_path', '/home/myuser/scripts/python'), ('python_module', 'rms_coil_combine'), ('python_class', 'RMSCoilCombine'), ]) config.add_gadget('Extract') config.add_gadget('AutoScale') config.add_gadget('FloatToShort', 'FloatToUShortGadget') config.add_gadget('ImageFinish') return config
def default(): # pylint: disable=C0301 '''Default config file, default.xml. Generates [1]_. References ========== .. [1] https://github.com/gadgetron/gadgetron/blob/master/gadgets/mri_core/config/default.xml ''' # pylint: enable=C0301 config = GadgetronConfig() config.add_reader('1008', 'GadgetIsmrmrdAcquisitionMessageReader') config.add_reader('1026', 'GadgetIsmrmrdWaveformMessageReader') config.add_writer('1022', 'MRIImageWriter') config.add_gadget('RemoveROOversampling') config.add_gadget('AccTrig', 'AcquisitionAccumulateTriggerGadget', props=[('trigger_dimension', 'repetition'), ('sorting_dimension', 'slice')]) config.add_gadget('Buff', 'BucketToBufferGadget', props=[('N_dimension', ''), ('S_dimension', ''), ('split_slices', 'true')]) config.add_gadget('SimpleRecon') config.add_gadget('ImageArraySplit') config.add_gadget('Extract') config.add_gadget('ImageFinish') return config
def grappa_cpu(): # pylint: disable=C0301 '''Generates grappa_cpu.xml. Generates [1]_. References ========== .. [1] https://github.com/gadgetron/gadgetron/blob/master/gadgets/grappa/config/grappa_cpu.xml ''' # pylint: enable=C0301 config = GadgetronConfig() config.add_reader('1008', 'GadgetIsmrmrdAcquisitionMessageReader') config.add_reader('1026', 'GadgetIsmrmrdWaveformMessageReader') config.add_writer('1022', 'MRIImageWriter') config.add_gadget('NoiseAdjust') config.add_gadget('PCA', 'PCACoilGadget') config.add_gadget('CoilReduction', props=[('coils_out', '16')]) # RO asymmetric echo handling config.add_gadget('AsymmetricEcho', 'AsymmetricEchoAdjustROGadget') config.add_gadget('RemoveROOversampling') config.add_gadget('Grappa', props=[('target_coils', '8'), ('use_gpu', 'false')]) config.add_gadget('GrappaUnmixing') config.add_gadget('Extract') config.add_gadget('AutoScale') config.add_gadget('FloatToShort', 'FloatToUShortGadget') config.add_gadget('ImageFinish') return config
def default(): config = GadgetronConfig() config.add_reader('1008','GadgetIsmrmrdAcquisitionMessageReader') config.add_reader('1026','GadgetIsmrmrdWaveformMessageReader') config.add_writer('1022','MRIImageWriter') config.add_gadget('RemoveROOversampling') config.add_gadget('AccTrig','AcquisitionAccumulateTriggerGadget',props=[ ('trigger_dimension','repetition'), ('sorting_dimension','slice') ]) config.add_gadget('Buff','BucketToBufferGadget',props=[ ('N_dimension',''), ('S_dimension',''), ('split_slices','true') ]) config.add_gadget('SimpleRecon') config.add_gadget('ImageArraySplit') config.add_gadget('Extract') config.add_gadget('ImageFinish') return(config)
path = 'mr_utils/test_data/tests/gadgetron/client/' file = 'input.h5' load_test_data(path, [file], do_return=False) data = '%s/%s' % (path, file) # Make a config script_dir = 'tmp/' default_dir = '' config = GadgetronConfig() config.add_reader('1008', 'GadgetIsmrmrdAcquisitionMessageReader') config.add_reader('1026', 'GadgetIsmrmrdWaveformMessageReader') config.add_writer('1022', 'MRIImageWriter') config.add_gadget('RemoveOversamplingPython', 'PythonGadget', props=[ ('python_path', default_dir), ('python_module', 'remove_2x_oversampling'), ('python_class', 'Remove2xOversampling'), ]) config.add_gadget('AccReconPython', 'PythonGadget', props=[ ('python_path', default_dir), ('python_module', 'accumulate_and_recon'), ('python_class', 'AccumulateAndRecon'), ]) config.add_gadget('CoilCombinePython', 'PythonGadget', props=[ ('python_path', script_dir), ('python_module', 'rms_coil_combine'),
def distributed_default(): # pylint: disable=C0301 '''Generates distributed_default.xml. Generates [1]_. References ========== .. [1] https://github.com/gadgetron/gadgetron/blob/master/gadgets/distributed/config/distributed_default.xml ''' # pylint: enable=C0301 config = GadgetronConfig() config.add_reader('1008', 'GadgetIsmrmrdAcquisitionMessageReader') config.add_reader('1022', 'MRIImageReader') config.add_writer('1022', 'MRIImageWriter') config.add_writer('1008', 'GadgetIsmrmrdAcquisitionMessageWriter') config.add_gadget('Distribute', 'IsmrmrdAcquisitionDistributeGadget', dll='gadgetron_distributed', props=[('parallel_dimension', 'repetition'), ('use_this_node_for_compute', 'true')]) config.add_gadget('RemoveROOversampling') config.add_gadget('AccTrig', 'AcquisitionAccumulateTriggerGadget', props=[('trigger_dimension', 'repetition'), ('sorting_dimension', 'slice')]) config.add_gadget('Buff', 'BucketToBufferGadget', props=[('N_dimension', ''), ('S_dimension', ''), ('split_slices', 'true')]) config.add_gadget('SimpleRecon') config.add_gadget('ImageArraySplit') config.add_gadget('Collect', dll='gadgetron_distributed') config.add_gadget('Extract') config.add_gadget('Sort', 'ImageSortGadget', props=[('sorting_dimension', 'repetition')]) config.add_gadget('ImageFinish') return config
'''Example of how to programmatically generate a config file.''' from mr_utils.gadgetron import GadgetronConfig if __name__ == '__main__': config = GadgetronConfig() config.add_reader(1008, 'GadgetIsmrmrdAcquisitionMessageReader') config.add_writer(1004, 'MRIImageWriterCPLX') config.add_writer(1005, 'MRIImageWriterFLOAT') config.add_writer(1006, 'MRIImageWriterUSHORT') config.add_gadget('Acc', 'AccumulatorGadget') config.add_gadget('FFT') config.add_gadget('Extract') config.add_gadget('ImageFinishFLOAT', 'ImageFinishGadgetFLOAT') print(config.tostring())