def prep_oldshapes_train(init_with = None, FCN_layers = False, batch_sz = 5, epoch_steps = 4, training_folder= "mrcnn_oldshape_training_logs"): import mrcnn.shapes as shapes MODEL_DIR = os.path.join(TRAINING_DIR, training_folder) # Build configuration object ----------------------------------------------- config = shapes.ShapesConfig() config.BATCH_SIZE = batch_sz # Batch size is 2 (# GPUs * images/GPU). config.IMAGES_PER_GPU = batch_sz # Must match BATCH_SIZE config.STEPS_PER_EPOCH = epoch_steps config.FCN_INPUT_SHAPE = config.IMAGE_SHAPE[0:2] # Build shape dataset ----------------------------------------------- dataset_train = shapes.ShapesDataset(config) dataset_train.load_shapes(3000) dataset_train.prepare() # Validation dataset dataset_val = shapes.ShapesDataset(config) dataset_val.load_shapes(500) dataset_val.prepare() try : del model print('delete model is successful') gc.collect() except: pass KB.clear_session() model = modellib.MaskRCNN(mode="training", config=config, model_dir=MODEL_DIR, FCN_layers = FCN_layers) print(' COCO Model Path : ', COCO_TRAINING_DIR) print(' Checkpoint folder Path: ', MODEL_DIR) print(' Model Parent Path : ', TRAINING_DIR) print(' Resent Model Path : ', RESNET_TRAINING_DIR) model.load_model_weights(init_with = init_with) train_generator = data_generator(dataset_train, model.config, shuffle=True, batch_size=model.config.BATCH_SIZE, augment = False) val_generator = data_generator(dataset_val, model.config, shuffle=True, batch_size=model.config.BATCH_SIZE, augment=False) model.config.display() return [model, dataset_train, dataset_val, train_generator, val_generator, config]
def prep_oldshapes_test(init_with = None, FCN_layers = False, batch_sz = 5, epoch_steps = 4, folder_name= "mrcnn_oldshape_test_logs"): import mrcnn.shapes as shapes MODEL_DIR = os.path.join(MODEL_PATH, folder_name) # MODEL_DIR = os.path.join(MODEL_PATH, "mrcnn_development_logs") # Build configuration object ----------------------------------------------- config = shapes.ShapesConfig() config.BATCH_SIZE = batch_sz # Batch size is 2 (# GPUs * images/GPU). config.IMAGES_PER_GPU = batch_sz # Must match BATCH_SIZE config.STEPS_PER_EPOCH = epoch_steps config.FCN_INPUT_SHAPE = config.IMAGE_SHAPE[0:2] # Build shape dataset ----------------------------------------------- dataset_test = shapes.ShapesDataset() dataset_test.load_shapes(500, config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1]) dataset_test.prepare() # Recreate the model in inference mode try : del model print('delete model is successful') gc.collect() except: pass KB.clear_session() model = modellib.MaskRCNN(mode="inference", config=config, model_dir=MODEL_DIR, FCN_layers = FCN_layers ) print(' COCO Model Path : ', COCO_MODEL_PATH) print(' Checkpoint folder Path: ', MODEL_DIR) print(' Model Parent Path : ', MODEL_PATH) print(' Resent Model Path : ', RESNET_MODEL_PATH) load_model(model, init_with = init_with) test_generator = data_generator(dataset_test, model.config, shuffle=True, batch_size=model.config.BATCH_SIZE, augment = False) model.config.display() return [model, dataset_test, test_generator, config]
from mrcnn.dataset import Dataset import tensorflow as tf import keras print("Tensorflow Version: {} Keras Version : {} ".format( tf.__version__, keras.__version__)) ##------------------------------------------------------------------------------------ ## setup project directories ##------------------------------------------------------------------------------------ import mrcnn.project_paths #-------------------------------------------------------------------------- # ## Configurations #-------------------------------------------------------------------------- config = shapes.ShapesConfig() config.IMAGES_PER_GPU = 2 config.BATCH_SIZE = 2 #Batch size is 2 (# GPUs * images/GPU). config.STEPS_PER_EPOCH = 3 config.display() # ## Notebook Preferences # def get_ax(rows=1, cols=1, size=8): # """Return a Matplotlib Axes array to be used in # all visualizations in the notebook. Provide a # central point to control graph sizes. # Change the default size attribute to control the size # of rendered images # """