コード例 #1
0
ファイル: LeafDataset.py プロジェクト: al3xl0g0/model-leaf_HU
    def random_image(self, height, width):
        bg_color = np.array([random.randint(0, 255) for _ in range(3)])

        shapes = []
        boxes = []
        indexes = []
        N = random.randint(self.min_leaf, self.max_leaf)

        # AZ START INSERT
        prev_angle = random.randint(0, 360)
        min_x = math.floor(0.4 * width)
        max_x = math.floor(0.6 * width)
        min_y = math.floor(0.4 * height)
        max_y = math.floor(0.6 * height)
        x_location = random.randint(min_x, max_x)
        y_location = random.randint(min_y, max_y)
        # AZ END INSERT

        for _ in range(N):
            # AZ modified
            if self.centered_leaves:
                shape, location, scale, angle, index = self.random_shape_centered(height, width, x_location, y_location, prev_angle)
            else:
                shape, location, scale, angle, index = self.random_shape(height, width)
            prev_angle = angle

            y, x, _ = np.asarray(self.img2[index]).shape
            shapes.append((shape, location, scale, angle, index))
            boxes.append([location[1], location[0], location[1] + y, location[0] + x])

        keep_ixs = utils.non_max_suppression(np.array(boxes), np.arange(N), 0.5)    # 0.3
        shapes = [s for i, s in enumerate(shapes) if i in keep_ixs]
        return bg_color, shapes
コード例 #2
0
ファイル: LeafDataset.py プロジェクト: al3xl0g0/model-leaf_HU
    def random_image_multiple_plants(self, height, width):
        bg_color = np.array([random.randint(0, 255) for _ in range(3)])
        shapes = []
        boxes = []
        num_plants = random.randint(self.min_plants, self.max_plants)
        N = 0

        for curr_plant in range(num_plants):

            N_curr = random.randint(self.min_leaf, self.max_leaf)
            N = N + N_curr
            prev_angle = random.randint(0, 360)
            min_x = math.floor(0.2 * width)
            max_x = math.floor(0.8 * width)
            min_y = math.floor(0.2 * height)
            max_y = math.floor(0.8 * height)
            x_location = random.randint(min_x, max_x)
            y_location = random.randint(min_y, max_y)

            for _ in range(N_curr):
                if self.centered_leaves:
                    shape, location, scale, angle, index = self.random_shape_centered(height, width, x_location, y_location, prev_angle)
                else:
                    shape, location, scale, angle, index = self.random_shape(height, width)
                prev_angle = angle
                y, x, channels = np.asarray(self.img2[index]).shape
                shapes.append((shape, location, scale, angle, index))
                boxes.append([location[1], location[0], location[1] + y, location[0] + x])

        keep_ixs = utils.non_max_suppression(np.array(boxes), np.arange(N), 0.5)    # 0.3
        shapes = [s for i, s in enumerate(shapes) if i in keep_ixs]
        return bg_color, shapes
コード例 #3
0
def filter_rois(refined_rois, class_ids, class_scores):
    # Remove boxes classified as background
    keep = np.where(class_ids > 0)[0]
    # Filter out low confidence boxes
    if config.DETECTION_MIN_CONFIDENCE:
        conf_keep = np.where(
            class_scores >= config.DETECTION_MIN_CONFIDENCE)[0]
        keep = np.intersect1d(keep, conf_keep)

    # Apply per-class non-max suppression
    pre_nms_class_ids = class_ids[keep]
    pre_nms_scores = class_scores[keep]
    pre_nms_boxes = refined_rois[keep]
    unique_pre_nms_class_ids = np.unique(pre_nms_class_ids)

    nms_keep = []
    for class_id in unique_pre_nms_class_ids:
        # Pick detections of this class
        ixs = np.where(pre_nms_class_ids == class_id)[0]
        # Apply NMS
        class_keep = utils.non_max_suppression(pre_nms_boxes[ixs],
                                               pre_nms_scores[ixs],
                                               config.DETECTION_NMS_THRESHOLD)
        # Map indicies
        class_keep = keep[ixs[class_keep]]
        nms_keep = np.union1d(nms_keep, class_keep)

    keep = np.intersect1d(keep, nms_keep).astype(np.int32)
    return keep
コード例 #4
0
ファイル: train_shapes.py プロジェクト: AndyShenAS/Mask_RCNN
 def random_image(self, height, width):
     """Creates random specifications of an image with multiple shapes.
     Returns the background color of the image and a list of shape
     specifications that can be used to draw the image.
     shapes = [s for i, s in enumerate(shapes) if i in keep_ixs] 这句,i是range(N)范围内的数
     """
     # Pick random background color
     bg_color = np.array([random.randint(0, 255) for _ in range(3)])
     # print('smy: ',bg_color)
     # Generate a few random shapes and record their
     # bounding boxes
     shapes = []
     boxes = []
     N = random.randint(1, 4)
     for _ in range(N):
         shape, color, dims = self.random_shape(height, width)
         shapes.append((shape, color, dims))
         x, y, s = dims
         boxes.append([y - s, x - s, y + s, x + s])
     # Apply non-max suppression wit 0.3 threshold to avoid
     # shapes covering each other
     keep_ixs = utils.non_max_suppression(np.array(boxes), np.arange(N),
                                          0.3)
     shapes = [s for i, s in enumerate(shapes) if i in keep_ixs]
     return bg_color, shapes
コード例 #5
0
 def random_image(self, height, width):
     bg_color = np.array([np.random.randint(0, 255) for _ in range(3)])
     shapes, boxes = [], []
     N = np.random.randint(1, 4)
     for _ in range(N):
         shape, color, dims = self.random_shape(height, width)
         shapes.append((shape, color, dims))
         X, Y, size = dims
         boxes.append([Y - size, X - size, Y + size, X + size])
     # Apply non-max suppression wit 0.3 threshold to avoid
     keep_ixs = utils.non_max_suppression(np.array(boxes), np.arange(N),
                                          0.3)
     shapes = [s for i, s in enumerate(shapes) if i in keep_ixs]
     return bg_color, shapes
コード例 #6
0
 def random_image(self, height, width):
     bg_color = np.array([random.randint(0, 255) for _ in range(3)])
     # Generate a few random auto and record their
     # bounding boxes
     auto = []
     boxes = []
     N = random.randint(1, 4)
     for _ in range(N):
         shape, color, dims = self.random_shape(height, width)
         auto.append((shape, color, dims))
         x, y, s = dims
         boxes.append([y - s, x - s, y + s, x + s])
     keep_ixs = utils.non_max_suppression(np.array(boxes), np.arange(N),
                                          0.3)
     auto = [s for i, s in enumerate(auto) if i in keep_ixs]
     return bg_color, auto
コード例 #7
0
ファイル: test.py プロジェクト: fong5855/ai_course_final
        def random_image(self, height, width):

            bg_color = np.array([random.randint(0, 255) for _ in range(3)])
            # Generate a few random shapes and record their
            # bounding boxes
            shapes = []
            boxes = []
            N = random.randint(1, 4)
            for _ in range(N):
                shape, color, dims = self.random_shape(height, width)
                shapes.append((shape, color, dims))
                x, y, s = dims
                boxes.append([y - s, x - s, y + s, x + s])
            # Apply non-max suppression wit 0.3 threshold to avoid
            # shapes covering each other
            keep_ixs = utils.non_max_suppression(np.array(boxes), np.arange(N),
                                                 0.3)
            shapes = [s for i, s in enumerate(shapes) if i in keep_ixs]
            return bg_color, shapes
コード例 #8
0
 def random_image(self, height, width):
     """Creates random specifications of an image with multiple shapes.
     Returns a list of shape specifications that can be used to draw the image.
     """
     # Generate a few random shapes and record their
     # bounding boxes
     shapes = []
     boxes = []
     N = 2  # random.randint(4, 6)
     for _ in range(N):
         shape, color, dims = self.random_shape(height, width)
         shapes.append((shape, color, dims))
         x, y, s = dims
         boxes.append([y - s, x - s, y + s, x + s])
     # Apply non-max suppression with 1 threshold to avoid
     # shapes covering each other (it was 0.3)
     keep_ixs = utils.non_max_suppression(np.array(boxes), np.arange(N), 1)
     shapes = [s for i, s in enumerate(shapes) if i in keep_ixs]
     return shapes
コード例 #9
0
    def random_image(self, height, width):
        """Generate random images."""
        # randomly pick bg color (3 channels)
        bg_color = np.array([random.randint(0, 255) for _ in range(3)])

        # genereate shapes and record their bouding boxes
        shapes = []
        boxes = []
        N = random.randint(1, 4)
        for _ in range(N):
            shape, color, dims = self.random_shape(height, width)
            shapes.append((shape, color, dims))
            x, y, s = dims
            boxes.append([y - s, x - s, y + s, x + s])
        """ threshold = 0.3 for non-max suppersion."""
        keep_ixs = utils.non_max_suppression(np.array(boxes), np.arange(N),
                                             0.3)
        shapes = [s for i, s in enumerate(shapes) if i in keep_ixs]

        return bg_color, shapes
コード例 #10
0
ファイル: shapes.py プロジェクト: Eatzhy/Deep-Learning
 def random_image(self, height, width):
     """Creates random specifications of an image with multiple shapes.
     Returns the background color of the image and a list of shape
     specifications that can be used to draw the image.
     """
     # Pick random background color
     bg_color = np.array([random.randint(0, 255) for _ in range(3)])
     # Generate a few random shapes and record their
     # bounding boxes
     shapes = []
     boxes = []
     N = random.randint(1, 4)
     for _ in range(N):
         shape, color, dims = self.random_shape(height, width)
         shapes.append((shape, color, dims))
         x, y, s = dims
         boxes.append([y - s, x - s, y + s, x + s])
     # Apply non-max suppression wit 0.3 threshold to avoid
     # shapes covering each other
     keep_ixs = utils.non_max_suppression(
         np.array(boxes), np.arange(N), 0.3)
     shapes = [s for i, s in enumerate(shapes) if i in keep_ixs]
     return bg_color, shapes
コード例 #11
0
#%% [markdown]
# #### Per-Class Non-Max Suppression

#%%
# Apply per-class non-max suppression
pre_nms_boxes = refined_proposals[keep]
pre_nms_scores = roi_scores[keep]
pre_nms_class_ids = roi_class_ids[keep]

nms_keep = []
for class_id in np.unique(pre_nms_class_ids):
    # Pick detections of this class
    ixs = np.where(pre_nms_class_ids == class_id)[0]
    # Apply NMS
    class_keep = utils.non_max_suppression(pre_nms_boxes[ixs],
                                           pre_nms_scores[ixs],
                                           config.DETECTION_NMS_THRESHOLD)
    # Map indicies
    class_keep = keep[ixs[class_keep]]
    nms_keep = np.union1d(nms_keep, class_keep)
    print("{:22}: {} -> {}".format(dataset.class_names[class_id][:20],
                                   keep[ixs], class_keep))

keep = np.intersect1d(keep, nms_keep).astype(np.int32)
print("\nKept after per-class NMS: {}\n{}".format(keep.shape[0], keep))

#%%
# Show final detections
ixs = np.arange(len(keep))  # Display all
# ixs = np.random.randint(0, len(keep), 10)  # Display random sample
captions = [
コード例 #12
0
    def random_image(self, image_id, height, width):
        '''
        Creates random specifications of an image with multiple shapes.
        Returns the background color of the image and a list of shape
        specifications that can be used to draw the image.
        '''
        # Pick random background color
        bg_color = np.array([random.randint(0, 255) for _ in range(3)])

        # Generate a few random shapes and record their
        # bounding boxes
        shapes = []
        N = random.randint(1,
                           self.shapes_per_image)  # number to shapes in image

        shape_choices = ["person", "car", "sun", "building", "tree", "cloud"]

        for _ in range(N):
            shape = random.choice(shape_choices)
            color, dims = self.random_shape(shape, height, width)
            shapes.append((shape, color, dims))
            if shape == "sun":
                shape_choices.remove("sun")
            # following two lines have been moved below, after removal of hidden_shapes
            # x, y, sx, sy = dims
            # boxes.append([y - sy, x - sx, y + sy, x + sx])

        ##--------------------------------------------------------------------------------
        ## Reorder shapes by increasing cy to simulate overlay
        ## (nearer shapes cover farther away shapes)
        # order shape objects based on closeness to bottom of image (-1) or top (+1)
        # this will result in items closer to the viewer have higher priority in NMS
        #--------------------------------------------------------------------------------
        sort_lst = [itm[2][1] for itm in shapes]
        sorted_shape_ind = np.argsort(np.array(sort_lst))[::+1]

        # print(" =====  Before final sort =====  ")
        # p4.pprint(shapes)
        # print(sort_lst)
        # print(sorted_shape_ind)
        tmp_shapes = []
        for i in sorted_shape_ind:
            tmp_shapes.append(shapes[i])
        shapes = tmp_shapes
        # print(' ===== Sahpes after sorting ===== ')
        # p4.pprint(shapes)

        ##-------------------------------------------------------------------------------
        ## find and remove shapes completely covered by other shapes
        ##-------------------------------------------------------------------------------
        hidden_shape_ixs = self.find_hidden_shapes(shapes, height, width)
        if len(hidden_shape_ixs) > 0:
            non_hidden_shapes = [
                s for i, s in enumerate(shapes) if i not in hidden_shape_ixs
            ]
            print('    ===> Image Id : (', image_id,
                  ')   ---- Zero Mask Encountered ')
            print('    ------ Original Shapes ------')
            p8.pprint(shapes)
            print(
                '    ------ shapes after removal of totally hidden shapes ------'
            )
            p8.pprint(non_hidden_shapes)
            print('    Number of shapes now is : ', len(non_hidden_shapes))
        else:
            non_hidden_shapes = shapes

        ##-------------------------------------------------------------------------------
        ## build boxes for to pass to non_max_suppression
        ##-------------------------------------------------------------------------------
        boxes = []
        for shp in non_hidden_shapes:
            x, y, sx, sy = shp[2]
            boxes.append([y - sy, x - sx, y + sy, x + sx])

        ##--------------------------------------------------------------------------------
        ## Non Maximal Suppression
        ##--------------------------------------------------------------------------------
        # Suppress occulsions more than 0.3 IoU
        # Apply non-max suppression with 0.3 threshold to avoid shapes covering each other
        # object scores (which dictate the priority) are assigned in the order they were created
        assert len(boxes) == len(
            non_hidden_shapes), "Problem with the shape and box sizes matching"
        N = len(boxes)

        keep_ixs = non_max_suppression(np.array(boxes), np.arange(N), 0.29)
        shapes = [s for i, s in enumerate(non_hidden_shapes) if i in keep_ixs]
        # print('===> Original number of shapes {}  # after NMS {}'.format(N, len(shapes)))

        #--------------------------------------------------------------------------------
        ## Reorder shapes to simulate overlay (nearer shapes cover farther away shapes)
        # order shape objects based on closeness to bottom of image (-1) or top (+1)
        # this will result in items closer to the viewer have higher priority in NMS
        #--------------------------------------------------------------------------------
        sort_lst = [itm[2][1] for itm in shapes]
        sorted_shape_ind = np.argsort(np.array(sort_lst))[::+1]

        # print(" =====  Before final sort =====  ")
        # p4.pprint(shapes)
        # print(sort_lst)
        # print(sorted_shape_ind)
        tmp_shapes = []
        for i in sorted_shape_ind:
            tmp_shapes.append(shapes[i])
        shapes = tmp_shapes
        # print(' ===== Sahpes after sorting ===== ')
        # p4.pprint(shapes)

        return bg_color, shapes
コード例 #13
0
def display_mrcnn_prediction():
    resized_image, image_meta, gt_class_ids, gt_bboxes, gt_masks = \
        modellib.load_image_gt(dataset, config, image_id, use_mini_mask=False)
    # Get input and output to classifier and mask heads.
    mrcnn = model.run_graph([resized_image], [
        ("proposals", model.keras_model.get_layer("ROI").output),
        ("probs", model.keras_model.get_layer("mrcnn_class").output),
        ("deltas", model.keras_model.get_layer("mrcnn_bbox").output),
        ("masks", model.keras_model.get_layer("mrcnn_mask").output),
        ("detections", model.keras_model.get_layer("mrcnn_detection").output),
    ])
    ax = get_ax(1, 4)
    ################################## display detections ###############################################
    # Get detection class IDs. Trim zero padding.
    det_class_ids = mrcnn['detections'][0, :, 4].astype(np.int32)
    padding_start_ix = np.where(det_class_ids == 0)[0][0]
    det_class_ids = det_class_ids[:padding_start_ix]
    detections = mrcnn['detections'][0, :padding_start_ix]
    log('trimmed_detection', detections)

    print("{} detections: {}".format(
        padding_start_ix,
        np.array(dataset.class_names)[det_class_ids]))

    captions = [
        "{} {:.3f}".format(dataset.class_names[int(class_id)], score)
        if class_id > 0 else ""
        for class_id, score in zip(detections[:, 4], detections[:, 5])
    ]
    visualize.draw_boxes(resized_image.copy(),
                         refined_boxes=utils.denorm_boxes(
                             detections[:, :4], resized_image.shape[:2]),
                         visibilities=[2] * len(detections),
                         captions=captions,
                         title="Detections",
                         ax=ax[0])
    ################################### display proposals ##########################################
    # Proposals are in normalized coordinates. Scale them to image coordinates.
    h, w = resized_image.shape[:2]
    proposals = np.around(mrcnn["proposals"][0] *
                          np.array([h, w, h, w])).astype(np.int32)

    # Class ID, score, and mask per proposal
    # mrcnn 的 shape 为 (batch_size, num_proposals=1000, num_classes)
    proposal_class_ids = np.argmax(mrcnn["probs"][0], axis=1)
    proposal_class_scores = mrcnn["probs"][
        0, np.arange(proposal_class_ids.shape[0]), proposal_class_ids]
    proposal_class_names = np.array(dataset.class_names)[proposal_class_ids]
    proposal_positive_ixs = np.where(proposal_class_ids > 0)[0]

    # How many ROIs vs empty rows?
    print("{} valid proposals out of {}".format(
        np.sum(np.any(proposals, axis=1)), proposals.shape[0]))
    print("{} positive ROIs".format(len(proposal_positive_ixs)))

    # Class counts
    print(list(zip(*np.unique(proposal_class_names, return_counts=True))))
    # Display a random sample of proposals.
    # Proposals classified as background are dotted, and
    # the rest show their class and confidence score.
    limit = 200
    ixs = np.random.randint(0, proposals.shape[0], limit)
    captions = [
        "{} {:.3f}".format(dataset.class_names[c], s) if c > 0 else ""
        for c, s in zip(proposal_class_ids[ixs], proposal_class_scores[ixs])
    ]
    visualize.draw_boxes(resized_image.copy(),
                         boxes=proposals[ixs],
                         visibilities=np.where(proposal_class_ids[ixs] > 0, 2,
                                               1),
                         captions=captions,
                         title="Proposals Before Refinement",
                         ax=ax[1])
    #################################### apply bounding box refinement #############################
    # Class-specific bounding box shifts.
    # mrcnn['deltas'] 的 shape 为 (batch_size, num_proposals=1000, num_classes, 4)
    proposal_deltas = mrcnn["deltas"][0,
                                      np.arange(proposals.shape[0]),
                                      proposal_class_ids]
    log("proposals_deltas", proposal_deltas)

    # Apply bounding box transformations
    # Shape: (num_proposals=1000, (y1, x1, y2, x2)]
    # NOTE: delta 是不分 normalized coordinates 和 pixel coordinates 的
    refined_proposals = utils.apply_box_deltas(
        proposals, proposal_deltas * config.BBOX_STD_DEV).astype(np.int32)
    log("refined_proposals", refined_proposals)

    # Show positive proposals
    # ids = np.arange(proposals.shape[0])  # Display all
    limit = 5
    ids = np.random.randint(0, len(proposal_positive_ixs),
                            limit)  # Display random sample
    captions = [
        "{} {:.3f}".format(dataset.class_names[class_id], score)
        if class_id > 0 else "" for class_id, score in zip(
            proposal_class_ids[proposal_positive_ixs][ids],
            proposal_class_scores[proposal_positive_ixs][ids])
    ]
    visualize.draw_boxes(
        resized_image.copy(),
        boxes=proposals[proposal_positive_ixs][ids],
        refined_boxes=refined_proposals[proposal_positive_ixs][ids],
        visibilities=np.where(
            proposal_class_ids[proposal_positive_ixs][ids] > 0, 1, 0),
        captions=captions,
        title="ROIs After Refinement",
        ax=ax[2])
    #################################### more steps ################################################
    # Remove boxes classified as background
    keep_proposal_ixs = np.where(proposal_class_ids > 0)[0]
    print("Remove background proposals. Keep {}:\n{}".format(
        keep_proposal_ixs.shape[0], keep_proposal_ixs))
    # Remove low confidence detections
    keep_proposal_ixs = np.intersect1d(
        keep_proposal_ixs,
        np.where(proposal_class_scores >= config.DETECTION_MIN_CONFIDENCE)[0])
    print("Remove proposals below {} confidence. Keep {}:\n{}".format(
        config.DETECTION_MIN_CONFIDENCE, keep_proposal_ixs.shape[0],
        keep_proposal_ixs))
    # Apply per-class non-max suppression
    pre_nms_proposals = refined_proposals[keep_proposal_ixs]
    pre_nms_proposal_scores = proposal_class_scores[keep_proposal_ixs]
    pre_nms_proposal_class_ids = proposal_class_ids[keep_proposal_ixs]

    nms_keep_proposal_ixs = []
    for class_id in np.unique(pre_nms_proposal_class_ids):
        # Pick detections of this class
        ixs = np.where(pre_nms_proposal_class_ids == class_id)[0]
        # Apply NMS
        class_keep = utils.non_max_suppression(pre_nms_proposals[ixs],
                                               pre_nms_proposal_scores[ixs],
                                               config.DETECTION_NMS_THRESHOLD)
        # Map indicies
        class_keep_proposal_ixs = keep_proposal_ixs[ixs[class_keep]]
        nms_keep_proposal_ixs = np.union1d(nms_keep_proposal_ixs,
                                           class_keep_proposal_ixs)
        print("{:12}: {} -> {}".format(dataset.class_names[class_id][:10],
                                       keep_proposal_ixs[ixs],
                                       class_keep_proposal_ixs))

    keep_proposal_ixs = np.intersect1d(keep_proposal_ixs,
                                       nms_keep_proposal_ixs).astype(np.int32)
    print("\nKeep after per-class NMS: {}\n{}".format(
        keep_proposal_ixs.shape[0], keep_proposal_ixs))
    #################################### Show final detections #####################################
    ixs = np.arange(len(keep_proposal_ixs))  # Display all
    # ixs = np.random.randint(0, len(keep), 10)  # Display random sample
    captions = [
        "{} {:.3f}".format(dataset.class_names[c], s) if c > 0 else ""
        for c, s in zip(proposal_class_ids[keep_proposal_ixs][ixs],
                        proposal_class_scores[keep_proposal_ixs][ixs])
    ]
    visualize.draw_boxes(
        resized_image.copy(),
        boxes=proposals[keep_proposal_ixs][ixs],
        refined_boxes=refined_proposals[keep_proposal_ixs][ixs],
        visibilities=np.where(proposal_class_ids[keep_proposal_ixs][ixs] > 0,
                              1, 0),
        captions=captions,
        title="Detections after NMS",
        ax=ax[3])
    plt.show()
コード例 #14
0
def muti_inf_remoteSensing_image(model, image_path=None):
    '''
    use multiple scale (different patch size) for inference, then merge them using non_max_suppression
    :param model: trained model
    :param image_path:
    :return: True if successful, False otherwise
    '''

    # get parameters
    inf_image_dir = parameters.get_string_parameters(para_file,
                                                     'inf_images_dir')
    muti_patch_w = parameters.get_string_parameters(para_file,
                                                    "muti_inf_patch_width")
    muti_patch_h = parameters.get_string_parameters(para_file,
                                                    "muti_inf_patch_height")
    muti_overlay_x = parameters.get_string_parameters(
        para_file, "muti_inf_pixel_overlay_x")
    muti_overlay_y = parameters.get_string_parameters(
        para_file, "muti_inf_pixel_overlay_y")
    final_keep_classes = parameters.get_string_parameters(
        para_file, "final_keep_classes")

    nms_iou_threshold = parameters.get_digit_parameters(
        para_file, "nms_iou_threshold", None, 'float')

    patch_w_list = [int(item) for item in muti_patch_w.split(',')]
    patch_h_list = [int(item) for item in muti_patch_h.split(',')]
    overlay_x_list = [int(item) for item in muti_overlay_x.split(',')]
    overlay_y_list = [int(item) for item in muti_overlay_y.split(',')]
    if final_keep_classes == '':
        final_keep_classes = None
    else:
        final_keep_classes = [
            int(item) for item in final_keep_classes.split(',')
        ]

    # inference and save to json files
    for patch_w, patch_h, overlay_x, overlay_y in zip(patch_w_list,
                                                      patch_h_list,
                                                      overlay_x_list,
                                                      overlay_y_list):
        inf_rs_image_json(model, patch_w, patch_h, overlay_x, overlay_y,
                          inf_image_dir)

    # load all boxes of images
    with open(inf_list_file) as file_obj:
        files_list = file_obj.readlines()
        for img_idx, image_name in enumerate(files_list):
            file_pattern = os.path.join(
                inf_output_dir, 'I%d_patches_*_*_*' %
                img_idx)  # e.g., I0_patches_320_320_80_80
            proc = subprocess.Popen('ls -d ' + file_pattern,
                                    shell=True,
                                    stdout=subprocess.PIPE,
                                    stderr=subprocess.PIPE)
            profiles, err = proc.communicate()
            json_folder_list = profiles.split()
            if len(json_folder_list) < 1:
                raise IOError('No folder containing json files in %s' %
                              inf_output_dir)

            # bytes to str
            if isinstance(json_folder_list[0], bytes):
                json_folder_list = [item.decode() for item in json_folder_list]

            print('loading json files of image :%d,  in %s' %
                  (img_idx, ','.join(json_folder_list)))
            # load all the boxes and scores
            mrcnn_r_list = [
            ]  # the results dict from rcnn, contains all the information
            mask_files = []  # mask file for instance, each box has a mask file
            boxes = []  # boxes of instance
            class_ids = []  # class id of each box
            patch_indices = []  # index of patch, on which contains the box
            scores = []  # scores of boxes
            json_files_list = []  # json files of patches
            for json_folder in json_folder_list:
                file_list = io_function.get_file_list_by_ext('.txt',
                                                             json_folder,
                                                             bsub_folder=False)
                json_files_list.extend(file_list)

            # load and convert coordinates, don't load mask images in this stage
            patch_idx = 0
            for json_file in json_files_list:
                mrcnn_r = build_RS_data.load_instances_patch(
                    json_file,
                    bNMS=True,
                    bReadMaks=False,
                    final_classes=final_keep_classes)
                mrcnn_r_list.append(
                    mrcnn_r)  # this corresponds to json_files_list
                if mrcnn_r is not None:  # this will ignore the patches without instances, it is fine hlc 2018-11-25
                    mask_files.extend(mrcnn_r['masks'])
                    boxes.extend(mrcnn_r['rois'])
                    scores.extend(mrcnn_r['scores'])
                    class_ids.extend(mrcnn_r['class_ids'])
                    patch_indices.extend([patch_idx] * len(mrcnn_r['rois']))
                patch_idx += 1

            # Apply non-max suppression
            keep_idxs = utils.non_max_suppression(np.array(boxes),
                                                  np.array(scores),
                                                  nms_iou_threshold)
            # boxes_keep = [r for i, r in enumerate(boxes) if i in keep_ixs]

            # convert kept patches to label images
            for idx, keep_idx in enumerate(keep_idxs):

                patch_idx = patch_indices[
                    keep_idx]  # the index in original patches

                # load mask (in the previous step, we did not load masks)
                mask_file = mask_files[keep_idx]
                patch_dir = os.path.dirname(json_files_list[patch_idx])
                org_img_name = mrcnn_r_list[patch_idx]['org_img']
                b_dict = mrcnn_r_list[patch_idx]['patch_boundary']
                patch_boundary = (b_dict['xoff'], b_dict['yoff'],
                                  b_dict['xsize'], b_dict['ysize'])
                img_patch = build_RS_data.patchclass(
                    os.path.join(inf_image_dir, org_img_name), patch_boundary)

                # the mask only contains one instances
                # masks can overlap each others, but instances should not overlap each other
                # non-instance pixels are zeros,which will be set as non-data when performing gdal_merge.pyg
                mask = cv2.imread(os.path.join(patch_dir, mask_file),
                                  cv2.IMREAD_UNCHANGED)
                mask[mask == 255] = class_ids[
                    keep_idx]  # when save mask,  mask*255 for display

                print('Save mask of instances:%d on Image:%d , shape:(%d,%d)' %
                      (idx, img_idx, mask.shape[0], mask.shape[1]))

                # short the file name to avoid  error of " Argument list too long", hlc 2018-Oct-29
                file_name = "I%d_%d" % (img_idx, idx)

                save_path = os.path.join(inf_output_dir, file_name + '.tif')
                if build_RS_data.save_patch_oneband_8bit(
                        img_patch, mask.astype(np.uint8), save_path) is False:
                    return False

    return True
コード例 #15
0
def show_mrcnn_prediction(image):
    resized_image, window, scale, padding, crop = utils.resize_image(
        image,
        min_dim=config.IMAGE_MIN_DIM,
        min_scale=config.IMAGE_MIN_SCALE,
        max_dim=config.IMAGE_MAX_DIM,
        mode=config.IMAGE_RESIZE_MODE)
    # Get input and output to classifier and mask heads.
    mrcnn = model.run_graph([resized_image], [
        ("proposals", model.keras_model.get_layer("ROI").output),
        ("probs", model.keras_model.get_layer("mrcnn_class").output),
        ("deltas", model.keras_model.get_layer("mrcnn_bbox").output),
        ("masks", model.keras_model.get_layer("mrcnn_mask").output),
        ("detections", model.keras_model.get_layer("mrcnn_detection").output),
    ])
    ################################## display detections ###############################################
    # Get detection class IDs. Trim zero padding.
    det_class_ids = mrcnn['detections'][0, :, 4].astype(np.int32)
    padding_start_ix = np.where(det_class_ids == 0)[0][0]
    det_class_ids = det_class_ids[:padding_start_ix]
    detections = mrcnn['detections'][0, :padding_start_ix]
    log('trimmed_detection', detections)

    print("{} detections: {}".format(
        padding_start_ix,
        np.array(dataset.class_names)[det_class_ids]))
    ################################### display proposals ##########################################
    # Proposals are in normalized coordinates. Scale them to image coordinates.
    h, w = resized_image.shape[:2]
    proposals = np.around(mrcnn["proposals"][0] *
                          np.array([h, w, h, w])).astype(np.int32)

    # Class ID, score, and mask per proposal
    # mrcnn 的 shape 为 (batch_size, num_proposals=1000, num_classes)
    proposal_class_ids = np.argmax(mrcnn["probs"][0], axis=1)
    proposal_class_scores = mrcnn["probs"][
        0, np.arange(proposal_class_ids.shape[0]), proposal_class_ids]
    proposal_class_names = np.array(dataset.class_names)[proposal_class_ids]
    proposal_positive_ixs = np.where(proposal_class_ids > 0)[0]

    # How many ROIs vs empty rows?
    print("{} valid proposals out of {}".format(
        np.sum(np.any(proposals, axis=1)), proposals.shape[0]))
    print("{} positive ROIs".format(len(proposal_positive_ixs)))

    # Class counts
    print(list(zip(*np.unique(proposal_class_names, return_counts=True))))
    # Display a random sample of proposals.
    # Proposals classified as background are dotted, and
    # the rest show their class and confidence score.
    limit = 200
    #################################### apply bounding box refinement #############################
    # Class-specific bounding box shifts.
    # mrcnn['deltas'] 的 shape 为 (batch_size, num_proposals=1000, num_classes, 4)
    proposal_deltas = mrcnn["deltas"][0,
                                      np.arange(proposals.shape[0]),
                                      proposal_class_ids]
    log("proposals_deltas", proposal_deltas)

    # Apply bounding box transformations
    # Shape: (num_proposals=1000, (y1, x1, y2, x2)]
    # NOTE: delta 是不分 normalized coordinates 和 pixel coordinates 的
    refined_proposals = utils.apply_box_deltas(
        proposals, proposal_deltas * config.BBOX_STD_DEV).astype(np.int32)
    log("refined_proposals", refined_proposals)
    #################################### more steps ################################################
    # Remove boxes classified as background
    keep_proposal_ixs = np.where(proposal_class_ids > 0)[0]
    print("Remove background proposals. Keep {}:\n{}".format(
        keep_proposal_ixs.shape[0], keep_proposal_ixs))
    # Remove low confidence detections
    keep_proposal_ixs = np.intersect1d(
        keep_proposal_ixs,
        np.where(proposal_class_scores >= config.DETECTION_MIN_CONFIDENCE)[0])
    print("Remove proposals below {} confidence. Keep {}:\n{}".format(
        config.DETECTION_MIN_CONFIDENCE, keep_proposal_ixs.shape[0],
        keep_proposal_ixs))
    # Apply per-class non-max suppression
    pre_nms_proposals = refined_proposals[keep_proposal_ixs]
    pre_nms_proposal_scores = proposal_class_scores[keep_proposal_ixs]
    pre_nms_proposal_class_ids = proposal_class_ids[keep_proposal_ixs]

    nms_keep_proposal_ixs = []
    for class_id in np.unique(pre_nms_proposal_class_ids):
        # Pick detections of this class
        ixs = np.where(pre_nms_proposal_class_ids == class_id)[0]
        # Apply NMS
        class_keep = utils.non_max_suppression(pre_nms_proposals[ixs],
                                               pre_nms_proposal_scores[ixs],
                                               config.DETECTION_NMS_THRESHOLD)
        # Map indicies
        class_keep_proposal_ixs = keep_proposal_ixs[ixs[class_keep]]
        nms_keep_proposal_ixs = np.union1d(nms_keep_proposal_ixs,
                                           class_keep_proposal_ixs)
        print("{:12}: {} -> {}".format(dataset.class_names[class_id][:10],
                                       keep_proposal_ixs[ixs],
                                       class_keep_proposal_ixs))

    keep_proposal_ixs = np.intersect1d(keep_proposal_ixs,
                                       nms_keep_proposal_ixs).astype(np.int32)
    print("\nKeep after per-class NMS: {}\n{}".format(
        keep_proposal_ixs.shape[0], keep_proposal_ixs))
    #################################### Show final detections #####################################
    ixs = np.arange(len(keep_proposal_ixs))  # Display all
    refined_bboxes = refined_proposals[keep_proposal_ixs][ixs]
    refined_bboxes -= np.array([window[0], window[1], window[0], window[1]])
    bboxes = refined_bboxes.astype('float32') / scale
    bboxes = bboxes.tolist()
    return bboxes
コード例 #16
0
    def load_sample(self,
                    samples,
                    dataset,
                    scaled=False,
                    scaled_to=50,
                    show_fig=True):
        """load the requested number of images.
        count: number of images to generate.
        scaled: whether to resize image or not.
        scaled_to: percentage to resize the image.
        """

        # Add classes
        self.add_class("shapes", 1, "Houses")
        self.add_class("shapes", 2, "Buildings")
        self.add_class("shapes", 3, "Sheds/Garages")

        # pick samples randomly
        self.samples = random.sample(range(0, len(dataset)), samples)

        # MAIN Loop
        for image_id, sample in enumerate(self.samples):

            # resize images
            frame_id = dataset[sample]
            self.imagePath = os.path.join(RGB_DIR, frame_id)
            self.image, self.width, self.height = self.scale_image(
                plt.imread(self.imagePath), scaled=scaled, scaled_to=scaled_to)

            # record polygons class their bounding boxes and areas
            shapes = []
            boxes = []
            areas = []
            list_vertices = []

            # read polygon annotations
            data = pd.read_json(
                self.imagePath.replace('raw', 'annotations').replace(
                    'png', 'png-annotated.json'))

            for shape in range(len(data.labels)):
                print('found {} {}'.format(
                    len(data.labels[shape]['annotations']),
                    data.labels[shape]['name']))

                # iterate thorough each polygons
                for poly in range(len(data.labels[shape]['annotations'])):

                    # get vertices of polygons (house, building, garage)
                    vertices = np.array(
                        data.labels[shape]['annotations'][poly]
                        ['segmentation'], np.int32)
                    vertices = vertices.reshape((-1, 1, 2))

                    # draw polygons on scaled image
                    if scaled == True:
                        scaled_vertices = []
                        for v in range(len(vertices)):
                            scaled_vertices.append(
                                int(vertices[v][0][0] * scaled_to / 100))  #x
                            scaled_vertices.append(
                                int(vertices[v][0][1] * scaled_to / 100))  #y
                        vertices = np.array(scaled_vertices).reshape(
                            (-1, 1, 2))

                    # draw polygons on scaled image to create segmentation
                    image, color, bbox, area = self.draw_polygons(
                        self.image, vertices, shape, draw_bbox=False)

                    # same length as total polygons
                    boxes.append(bbox)
                    areas.append(area)
                    shapes.append((data.labels[shape]['name'], color, bbox))
                    list_vertices.append(vertices)

            # Pick random background color
            bg_color = np.array([random.randint(0, 255) for _ in range(3)])

            # collect all necessary data
            self.add_image("shapes",
                           image_id=image_id,
                           path=self.imagePath,
                           width=self.width,
                           height=self.height,
                           bg_color=bg_color,
                           shapes=shapes,
                           list_vertices=list_vertices,
                           image=self.image)

            # Apply non-max suppression wit 0.3 threshold to avoid shapes covering each other
            keep_ixs = utils.non_max_suppression(np.array(boxes),
                                                 np.arange(len(boxes)), 0.3)
            shapes = [s for i, s in enumerate(shapes) if i in keep_ixs]

            # create mask for each instances
            mask, class_ids = self.load_mask(image_id)

            if show_fig == True:
                fig = plt.figure(figsize=(12, 8),
                                 dpi=100,
                                 facecolor='w',
                                 edgecolor='k')
                plt.imshow((image * 255).astype(np.uint8))
                plt.show()
                visualize.display_top_masks(self.image, mask, class_ids,
                                            class_names)
コード例 #17
0
def refine_detections(rois, probs, deltas, window, config):
    '''
    Refine classified proposals and filter overlaps and return final detections.

    Inputs:
    ------
        
    rois:           rpn_rois    - [N, (y1, x1, y2, x2)] in normalized coordinates
    probs:          mrcnn_class - [N, num_classes]. Class probabilities.
    deltas:         mrcnn_bbox  - [N, num_classes, (dy, dx, log(dh), log(dw))]. 
                                  Class-specific bounding box deltas.
                                  
    window:         (y1, x1, y2, x2) in image coordinates. The part of the image
                    that contains the image excluding the padding.

    Returns:
    --------
    detections      [N, (y1, x1, y2, x2, class_id, score)]
    '''

    
    ##  1. Find Class IDs with higest scores for each per ROI
    class_ids       = np.argmax(probs, axis=1)
    
    ##  2. Get Class probability(score) and bbox delta of the top class of each ROI
    class_scores    =  probs[np.arange(class_ids.shape[0]), class_ids]
    deltas_specific = deltas[np.arange(deltas.shape[0])   , class_ids]
    
    ##  3. Apply bounding box delta to the corrsponding rpn_proposal
    # Shape: [boxes, (y1, x1, y2, x2)] in normalized coordinates
    refined_rois    = apply_box_deltas(rois, deltas_specific * config.BBOX_STD_DEV)
    
    ##  4. Convert the refined roi coordiates from normalized to image domain
    # TODO: better to keep them normalized until later   
    height, width   = config.IMAGE_SHAPE[:2]
    refined_rois   *= np.array([height, width, height, width])
    
    ##  5.  Clip boxes to image window
    refined_rois    = clip_to_window(window, refined_rois)
    
    ##  6.  Round and cast to int since we're deadling with pixels now
    refined_rois    = np.rint(refined_rois).astype(np.int32)

    ##  7.  TODO: Filter out boxes with zero area

    ##  8.  Filter out background boxes
    keep = np.where(class_ids > 0)[0]
    # Filter out low confidence boxes
    if config.DETECTION_MIN_CONFIDENCE:
        keep = np.intersect1d(keep, np.where(class_scores >= config.DETECTION_MIN_CONFIDENCE)[0])

    ##----------------------------------------------------------------------------
    ##  9.  Apply per-class NMS
    ##----------------------------------------------------------------------------
    pre_nms_class_ids = class_ids[keep]
    pre_nms_scores    = class_scores[keep]
    pre_nms_rois      = refined_rois[keep]
    nms_keep          = []
    # print(' apply per class nms')    
    for class_id in np.unique(pre_nms_class_ids):
        # Pick detections of this class
        ixs = np.where(pre_nms_class_ids == class_id)[0]

        # print('class_id : ', class_id)
        # print('pre_nms_rois.shape:', pre_nms_rois[ixs].shape)
        # pp.pprint(pre_nms_rois[ixs])
        # print('pre_nms_scores.shape :', pre_nms_scores[ixs].shape)
        # pp.pprint(pre_nms_scores[ixs])    
        # Apply NMS
        class_keep = non_max_suppression(pre_nms_rois[ixs], 
                                         pre_nms_scores[ixs],
                                         config.DETECTION_NMS_THRESHOLD)
        # Map indicies
        class_keep = keep[ixs[class_keep]]
        nms_keep   = np.union1d(nms_keep, class_keep)
    
    keep = np.intersect1d(keep, nms_keep).astype(np.int32)

    ##----------------------------------------------------------------------------
    ## 10.  Keep top detections
    ##----------------------------------------------------------------------------
    roi_count = config.DETECTION_MAX_INSTANCES
    top_ids   = np.argsort(class_scores[keep])[::-1][:roi_count]
    keep      = keep[top_ids]

    ##----------------------------------------------------------------------------
    ## 11.  Arrange output as [N, (y1, x1, y2, x2, class_id, score)]
    ##      Coordinates are in image domain.
    ##----------------------------------------------------------------------------
    result = np.hstack((refined_rois[keep],
                        class_ids   [keep][..., np.newaxis],
                        class_scores[keep][..., np.newaxis]))

    return result
コード例 #18
0
  		#creates random specifications of an image with multiple shapes
  		#returns the background color of the image
  		bg_color=np.array([random.randint(0,255) for _in range(3)])
  		shapes=[]
  		boxes=[]
  	  	N = random.randint(1, 4)
  	  	# decides the number of the shapes in the image (yes....randomly)
        for _ in range(N):
        	shape, color, dims = self.random_shape(height, width)
        	shapes.append((shape, color, dims))
            x, y, s = dims
           	boxes.append([y-s, x-s, y+s, x+s])\

        # Apply non-max suppression with 0.3 threshold to avoid
        # shapes covering each other (occlusion)
        keep_ixs = utils.non_max_suppression(np.array(boxes), np.arange(N), 0.3)
        shapes = [s for i, s in enumerate(shapes) if i in keep_ixs]
        return bg_color, shapes

# Preparing Different Datasets

#Forming an object for the Dataset
dataset_train=ShapesDataset()
# forming dataset for the algo to train on
dataset_train.load_shapes(500,config,IMAGE_SHAPE[0],config.IMAGE_SHAPE[1])
dataset_train.prepare()
# Preparing dataset for validation as well, just like above (we are not here to spoonfeed you)
validation_train=ShapesDataset()
validation_train.load_shapes(500,config,IMAGE_SHAPE[0],config.IMAGE_SHAPE[1])
validation_train.prepare()
# Displaying the images with the masks
コード例 #19
0
def refine_detections(rois, probs, deltas, window, config):
    '''
    Refine classified proposals and filter overlaps and return final detections.

    Inputs:
    ------
        
    rois:           rpn_rois    - [N, (y1, x1, y2, x2)] in normalized coordinates
    
                    passed from PROPOSAL_LAYER
                                  
    probs:          mrcnn_class - [N, num_classes]. Class probabilities.
    deltas:         mrcnn_bbox  - [N, num_classes, (dy, dx, log(dh), log(dw))]. 
                                  Class-specific bounding box deltas.
                    
                    passed from FPN_CLASSIFIER_GRAPH              
    window:         
    (y1, x1, y2, x2) in image coordinates. The part of the image
                    that contains the image excluding the padding.

    Returns:
    --------
    detections      [M, (y1, x1, y2, x2, class_id, score)]
                    M - determined by DETECTION_MAX_INSTANCES
                    
                    detection bounding boxes -- these have had the corresponding 
                    deltas applied, and their boundries clipped to the image window
    '''

    ##----------------------------------------------------------------------------
    ##  1. Find Class IDs with higest scores for each per ROI
    ##----------------------------------------------------------------------------
    class_ids = np.argmax(probs, axis=1)

    ##----------------------------------------------------------------------------
    ##  2. Get Class probability(score) and bbox delta of the top class of each ROI
    ##----------------------------------------------------------------------------
    class_scores = probs[np.arange(class_ids.shape[0]), class_ids]
    deltas_specific = deltas[np.arange(deltas.shape[0]), class_ids]

    ##----------------------------------------------------------------------------
    ##  3. Apply bounding box delta to the corrsponding rpn_proposal
    ##----------------------------------------------------------------------------
    # Shape: [boxes, (y1, x1, y2, x2)] in normalized coordinates
    refined_rois = apply_box_deltas_np(rois,
                                       deltas_specific * config.BBOX_STD_DEV)

    ##----------------------------------------------------------------------------
    ##  4. Convert the refined roi coordiates from normalized to NN image domain
    ##  5.  Clip boxes to image window
    ##  6.  Round and cast to int since we're deadling with pixels now
    ##----------------------------------------------------------------------------
    # TODO: better to keep them normalized until later
    height, width = config.IMAGE_SHAPE[:2]
    refined_rois *= np.array([height, width, height, width])
    refined_rois = clip_to_window(window, refined_rois)
    refined_rois = np.rint(refined_rois).astype(np.int32)

    ##----------------------------------------------------------------------------
    ##  7.  TODO: Filter out boxes with zero area
    ##----------------------------------------------------------------------------

    ##----------------------------------------------------------------------------
    ##  8.  Filter out background boxes
    ##      keep : contains indices of non-zero elements in class_ids
    ##      config.DETECTION_MIN_CONFIDENCE == 0
    ##      np.intersect: find indices into class_ids that satisfy:
    ##        -  class_id     >  0
    ##        -  class_scores >=            config.DETECTION_MIN_CONFIDENCE (0.3)
    ##----------------------------------------------------------------------------
    keep = np.where(class_ids > 0)[0]
    # Filter out low confidence boxes
    if config.DETECTION_MIN_CONFIDENCE:
        keep = np.intersect1d(
            keep,
            np.where(class_scores >= config.DETECTION_MIN_CONFIDENCE)[0])

    ##----------------------------------------------------------------------------
    ##  9.  Apply per-class NMS
    ##----------------------------------------------------------------------------
    pre_nms_class_ids = class_ids[keep]
    pre_nms_scores = class_scores[keep]
    pre_nms_rois = refined_rois[keep]
    nms_keep = []

    # print(' apply per class nms')
    # print(' keep ixs : ', keep.shape)
    # print(' pre_nms_rois.shape   :', pre_nms_rois.shape)
    # print(' pre_nms_scores.shape :', pre_nms_scores.shape)

    for class_id in np.unique(pre_nms_class_ids):
        # Pick detections of this class
        ixs = np.where(pre_nms_class_ids == class_id)[0]

        # print()
        # print('class_id : ', class_id)
        # print('---------------------')
        # print(' ixs : ', ixs.shape)
        # pp.pprint(ixs)
        # print('pre_nms_rois.shape:', pre_nms_rois[ixs].shape)
        # pp.pprint(pre_nms_rois[ixs])
        # print('pre_nms_scores.shape :', pre_nms_scores[ixs].shape)
        # pp.pprint(pre_nms_scores[ixs])

        # Apply NMS - Suppress anything with IoU higher than config.DETECTION_NMS_THRESHOLD
        class_keep = non_max_suppression(pre_nms_rois[ixs],
                                         pre_nms_scores[ixs],
                                         config.DETECTION_NMS_THRESHOLD)
        # Map indicies
        class_keep = keep[ixs[class_keep]]
        nms_keep = np.union1d(nms_keep, class_keep)

        # print('Class keep: ', class_keep)
        # print('NMS keep  : ', nms_keep.astype(np.int))
        # print('post_nms_rois.shape  :', refined_rois[class_keep].shape)
        # pp.pprint(refined_rois[class_keep])
        # print('post nms_scores.shape for class :', class_scores[class_keep].shape)
        # pp.pprint(class_scores[class_keep])

    keep = np.intersect1d(keep, nms_keep).astype(np.int32)

    ##----------------------------------------------------------------------------
    ## 10.  Keep top detections
    ##----------------------------------------------------------------------------
    roi_count = config.DETECTION_MAX_INSTANCES
    top_ids = np.argsort(class_scores[keep])[::-1][:roi_count]
    keep = keep[top_ids]

    ##----------------------------------------------------------------------------
    ## 11.  Add a detect_ind = +1 to differentiate from false postives added in eval layer
    ##----------------------------------------------------------------------------
    detect_ind = np.ones((top_ids.shape[0], 1))

    ##----------------------------------------------------------------------------
    ## 11.  Arrange output as [N, (y1, x1, y2, x2, class_id, score)]
    ##      Coordinates are in image domain.
    ##----------------------------------------------------------------------------
    result = np.hstack((refined_rois[keep], class_ids[keep][..., np.newaxis],
                        class_scores[keep][..., np.newaxis], detect_ind))

    return result
コード例 #20
0
def multiview_detect(model, im, standard=False, verbose=True) :
    # Implements Multi-Transform detection (see multi-transform detection chapter in report)
    od = model.detect([im])[0]  
    if standard :
        # if standard more activated then return the first, normal , detection
        return od
    # run 3 more detections on rotated and flipped image
    r90_im = skimage.transform.rotate(im, 90, resize=True, preserve_range=True)
    r90 = model.detect([r90_im])[0] 
    rn90_im = skimage.transform.rotate(im, -90, resize=True, preserve_range=True)
    rn90 = model.detect([rn90_im])[0] 
    ud_im = im[::-1]
    ud = model.detect([ud_im])[0] 

    # get translated bounding boxes
    r90_bbx = np.array([translatecoord(len(r90_im), len(r90_im[0]), b, "left") for b in r90['rois']] )
    rn90_bbx = np.array([translatecoord(len(rn90_im), len(rn90_im[0]), b, "right") for b in rn90['rois']] )
    ud_bbx = np.array([translatecoord(len(ud_im), len(ud_im[0]), b, "upsidedown") for b in ud['rois']] )


    # rotate masks (todo: move this code to function similar to translatecoord)
    rnm = rn90['masks'][:, :, 0]
    rn90_mask = np.zeros([len(rnm[0]), len(rnm), rn90['masks'].shape[-1]], dtype=np.uint8)
    for i in range(rn90['masks'].shape[-1] ) :
             tmp = rn90['masks'][:,:,i]
             tmp = tmp.transpose()
             tmp = tmp[::-1]
             rn90_mask[:, :, i] = tmp

    rm = r90['masks'][:, :, 0]
    r90_mask = np.zeros([len(rm[0]), len(rm), r90['masks'].shape[-1]], dtype=np.uint8)
    for i in range(r90['masks'].shape[-1] ) :
             tmp = r90['masks'][:,:,i]
             tmp = tmp[::-1]
             tmp = tmp.transpose()
             r90_mask[:, :, i] = tmp

    for i in range(ud['masks'].shape[-1]) :
            tmp = ud['masks'][:, : , i] 
            ud['masks'][:, :, i] = tmp[::-1]

    # make sure the masks are the same shape to ensure a successful overlay
    if od["masks"].shape != r90_mask.shape or od["masks"].shape != rn90_mask.shape :
       r90_mask.resize((len(od['masks']), len(od['masks'][0]), r90['masks'].shape[-1]))
       rn90_mask.resize((len(od['masks']), len(od['masks'][0]), rn90['masks'].shape[-1]))
    
    # merge masks and bounding box vectors in preparation for the nonm-maximum suppression process
    all_masks = np.concatenate((od['masks'], ud['masks'], r90_mask, rn90_mask), axis=2)
    all_bboxes = np.concatenate((od['rois'], ud_bbx, r90_bbx, rn90_bbx))
    all_scores = np.concatenate(( od['scores'], ud['scores'], r90['scores'], rn90['scores']))
    all_class_ids = np.concatenate(( od['class_ids'], ud['class_ids'], r90['class_ids'], rn90['class_ids']))

    final = utils.non_max_suppression(all_bboxes, all_scores, 0.55)
    # final contains the indices of the boxes to be kept, these are used to extract them as well as the masks, scores and other metadata corresponding to each
    final_masks = np.take(all_masks, final, axis=2) 
    final_bboxes= np.take(all_bboxes, final, axis=0)
    final_scores = np.take(all_scores, final)
    final_class_ids = np.take(all_class_ids, final)
    if verbose :
        print("standard detection instances : " + str(len(od['rois'])) )
        print("90 deg detection instances : " + str(len(r90_bbx)) )
        print("-90 deg detection instances : " + str(len(rn90_bbx)) )
        print("upside down detection instances : " + str(len(ud_bbx)) )
        print("post nms detect : " + str(len(final_bboxes)))
    #vis.display_instances(im, final_bboxes, final_masks, final_class_ids, ['', ''] , save=True, name="multiview_detect_{}_{}".format(sys.argv[2].split('/')[-1].split('.')[0], sys.argv[3]), savedir=".")
    return {
            'rois' : final_bboxes,
            'scores' : final_scores,
            'masks' : final_masks,
            'class_ids' : final_class_ids
        }